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TRANSLATOR’S PREFACE

I iroPK this work may contribute towards supplying the

“pressing need of text-books upon the liigher branches of

mathematic,’^ of wliich Dr. Glaisher has recently spoken in

his presidential address to the London Mathematical Society.

I must here express my deep sense of obligation to IVo-

fessor Klein for his permission to publish an English trans-

lation of his work. The chief diiliculty has been to choose

proper ecpiivalents for technical expressions in the text, and

here Professor Cayley has kindly allowed me to refer to him.

I have also consulted Cole’s review of the book in Vol. ix. No. 1,

of the America n Joaniai of Mathe nutf icHy and borrowed his

expression “ self-conjugate subgroup ” for “ ausgezeichnete

untergruppe.”

As regards the Iranslation itself, I have been most for-

tunate in obtaining the help of Miss Borchardt, who, notwith-

standing many other engagements, has most kindly gone over

most of the manuscript wdth me.

It would be out of place to speak here of the book itself

:

a glance at the table of contents will suggest that “tract

of beautiful country, seen at first in the distance, but which

will bear to be rambled through and studied in every detail of

hillside and valley, stream, rock, wood, and flower ” (Cayley).

1888 .

In preparing the second edition of the translation I have

received much valuable help from Professor Burnside, F.R.S.,

for which I desire to express my warmest thanks.

G. G. M.
October 1913 .





PEEFACE
The theory of the Icosahedron has during the last few years

obtained a place of such importance for nearly all departments

of modern analysis, that it seemed expedient to publish a

systematic exposition of the same. Should this prove accept-

able, I propose to continue in the same course and to treat in

a similar manner the subject of l^lliptic ^iodular Functions,

and the general investigaiions newly made of Single-valued

Functions, with linear transformations into themselves. Thus

a treatise of several volumes would grow, in whicli I should

expect to promote science, at least in so far as it might

introduce many to realms of modern mathematics rich in far-

stretching vistas.

Itefcrriiig generally as to the limitations of the material,

which I have observed in this publication, to the following

exposition itself, I would here only draw attention to the

second part, which treats of the solution of equations of the

fifth degree. It is now fully twenty-five years since Brioschi,

Hermite, and Krouecker in joint labours created the modern

theory of equations of the fifth degree. But though these

investigations are now and again quoted, the mathematical

world at large has hitherto failed to grasp their true import.

By giving the first place in the following pages to the subject

of the Icosaliedron, and by treating this as the true basis

of the processes of solution, a view of the theory is brought

forward than which a simpler and more lucid one cannot well

be desired.

A special difficulty, which presented itself in the execution
vii



PREFACEviii

of my plan, lay in the great variety of mathematical methods

entering into the theory of the Icosahedron. On this account

it seemed advisable to take for granted no specific previous

knowledge in any direction, but rather to introduce, where

necessary, such explanations and references as might sufiice

as preliminary landmarks on the field under immediate survey.

What I, however, do expect in my reader is a certain ripeness

of mathematical judgment, which shall enable him to interpret

concise, brief statements, so as to see in them the general

principle involved in the particular case. This is the same

method I have ever pursued in my more advanced lectures

;

indeed I have introduced into the details of these expositions

the practices of my lecture-room. . It is in this spirit I would

have the title interpreted which I have given to my dis-

quisition.

I cannot close these short prefatory remarks without ex-

pressing my special thanks to my honoured friends Professor

Lie in Christiania and Professor Gordan in Erlangen for mani-

fold suggestions and assistance. My indebtedness to Professor

Lie dates back to the years 1869-70, when we were spending

the last period of our student-life in Berlin and Paris together

in intimate comradeship. At that time we jointly conceived

the scheme of investigating geometric or analytic forms sus-

ceptible of transformation by means of groups of changes.

This purpose has been of directing inlluence in our subsequent

labours, though these may have appeared to lie far asunder.

Whilst I primarily directed my attention to groups of discrete

operations, and was thus led to the investigation of regular

solids and their relations to the theory of equations. Professor

Lie attacked the more recondite theory of continued groups

of transformations, and therewith of differential equations.

It was in the autumn of 1874 that I first came into real

contact with Professor Gordan. I had at that time already



PREFACE IX

commenced the study of the Icosahedron for myself (without

then knowing Professor Schwarz’s earlier works, to which we

shall hereafter frequently have occasion to refer)
;
but I con-

sidered my whole manner of attacking the question rather

in the light of preliminary training. If now a far-reaching

theory has grown from those beginnings, I attribute this result

primarily to Professor Gordan. I am not here referring to his

trenchant and profound labours, which shall be fully reported

upon hereafter. In this place I must record what cannot be

expressed in quotations or references, namely, that Professor

Gordan has spurred me on when I flagged in my labours, and

that he has helped me with the greatest disinterestedness over

many difficulties which I should never have overcome alone.

F. KLEIN.

Leipzig, May 24 , 1884 .
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PART I

THEORY OF THE ICOSAHEDRON ITSELF





CHAPTER I

THE REGULAR SOLIDS AND THE THEORY
OF GROUPS

§1. Statement of the Question.

When we speak, in the following pages, of the icosahedron, or

in general of a regular solid, this expression is to be understood

in an extended sense
;
namely, we do not actually operate with

general constructions in space, but confine ourselves essentially

to the sphere which is described through the summits of the

regular solid, and to which we suppose the edges and sides of

the regular solid transferred by linear projection from the

centre of tlie sphere. The nearer object of our consideration

is therefore a determinate partition of the sphere, and we only

return for greater convenience of expression to the phrases, and

in part to the constructions, of the geometry of space.

To the regular solids, as the ancients knew them, are usually

added in modern times the Kepler solids (whose sides mutually

interpenetrate one another). If we wished to transfer them,

in the manner explained, by central-projection on to the sphere,

a multiple envelopment of the sphere would result. It is,

indeed, not hard to see that there is an infinite number of such

envelopments of a regular type.* But comparatively compli-

cated relations of this nature shall be set aside in the following

pages. We only investigate those simple figures which corre-

spond in the sense mentioned to the regular tetrahedron, the

octahedron, the cube, the icosahedron, and the pentagon-dodeka-

hedron. To these we will then add a sixth configuration, which

corresponds to the pla'ne regular u-gon^ In fact, by considering

* Cf.\n this respect the new work of Hess: “Introduction to the Theory

of the Partition of a Sphere, with Special Reference to its Application to the

Theory of Equilateral and Equiangular Polyhedra.” Leipzig, 1883,
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the x)ortion of the plane limited by the sides of the n-gon to be

doubled, we can describe this latter as a regular solid—

a

dihedron, as we will say : only that this solid, contrary to the

elementary notion of such, encloses no space. If we transfer

the dihedron by central-projection on to the surface of the

circumscribed sphere, we have first, corresponding to its n
summits, n equidistant points on a great circle (which might

be called the equator), between which lie, as projections of the

edges of the dihedron, the n pieces into which this circle is

divided by the n points. We then, as is natural, make the two

half-spheres bounded by the equator to correspond to the two

planes which we have just distinguished, and which bound the

dihedron.

But—and this must be emphasised from the first—it is not

actually the figures themselves here enumerated which, in the

following pages, form the subject of onr consideration, but rather

those rotations or reflexions^ or, shortly, those elementary geomet-

rical operations by which the said figures coincide with them-

selves. The fl^xLres are for us only the frameximlc ly means oj

which we survey the totality of certain rotations or other transfor-

mations. Therefore the individual regular solids will for us

be inseparably connected with their polar figures, which, like

themselves remain unaltered by these operations. In this sense

the octahedron belongs to the cube whose summits correspond to

the mid-points of the sides of the octahedron, the icosahedron

to the pentagon-dodekahedron, which has an analogous position.

Starting from the ,same principle, we will consider with the

tetrahedron the allied counter-tetrahedron (whose summits are

diametrically opposite to the summits of the original tetra-

hedron) ;
we will, finally, in the case of the dihedron, mark the

two poles of the sphere corresponding to the two sides thereof.*

There are thus four different forms which lie at the root of our

considerations. We will, in what follows, briefly characterise

them by the names dihedron, tetrahedron, octahedron, and icosa-

hedron. If, in our later developments, we bring the case of the

icosahedron in many respects into especial prominence, and il

we have, in accordance with this, mentioned the icosahedron

* The configuration of the dihedron is therefore the same as has been

elsewhere termed the doMe-pyromid.
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alone in the title of this part, it is because the case of the

icosahedral configuration is in all respects the most interesting

of them.

As soon as we enter upon the task of studying the rotations,

&c., in question, by which the configurations which we have

mentioned are transformed into themselves, we are compelled

to take into account the important and comprehensive theory

which has been principally established by the pioneering works

of Galois,* and which we term the group^theory,^ Originally

sprung from the theory of equations, and having a correspond-

ing relation with the of any kind of elements, this

theory includes, as has long been recognised, every question

with which we are concerned in the case of a closed manifold-

ness of any kind of operation. We say of any operations that

they form a group^ if any two of the operations, compounded,

again produce an operation included amongst those first given.

In this sense we have at the outset the proposition :

—

The rotations ichich hring one of the regular soIvIh into coin-

cidence with itself collectivelyform a group.

For it is clear that any two rotations of this kind, applied

one after another, generate again a rotation of the same nature.

It is otherwise with the reflexions by means of which a regular

solid is transformed into itself. These taken hy themselves in no

way form a group. For two reflexions applied one after another

give not a reflexion but a rotation. True, a group will be again

formed if we take these reflexions in conjunction with the

rotations just raontioned, and certain other operations derived

from them by compounding. We shall, moreover, only consider

these groups incidentally in the following pages, and shall

describe them as the extended groups.

1829. Cf.
** CEuvres de Galois ” in Liouville’s Journal, Series I, tome ii,

1846.

t Though the explanations in the text are limited almost entirely to con-

siderations of the theory of groups, the geometer will be interested, apart from

these, in the remarkable relations of position which arise in an individual case

on the basis of group theory properties, and are governed by them. I should

like to call attention here to the researches which Herr Reye and M. Stephanos

have devoted in this sense to the theory of the cube (** Acta Math.,” t. i, p. 93,

97 ;
“ Math. Ann.,” xxii, p. 348, 1883).
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§2. Pkeliminary Notions of the Group-Theory.

Before we turn to the special groups which occur in con-

nection with the regular solids, it will be useful to make
mention of certain general notions which have been worked out

in other directions in the theory of groups. I beg the reader,

who is as yet not conversant with these theories, to make him-

self acquainted, in conjunction with the short exposition which
is to be given here (and which on later occasions will be further

completed in various directions), with one of the more detailed

expositions* which the theory of groups has lately received.

In what follows we consider, with certain exceptions, only

finite groups. Such a group is first characterised by the

number iV, of the operations which it embraces, where we
always count the so-called “ identical ’’ operation as one

;
we

denote this number as the order of the group. Further,

we shall give the periodicity of the individual operations, i.e,,

the number of repetitions which the individual operation needs

in order to return to identity
;
and, moreover, we shall give the

totality of the sub-groups, i.e,, all such combinations of a part

of our operations as, taken together, possess the character of

a group. The degree of a sub-group is always a factor of the

degree JV of the principal group. The simplest sub-group (and

we may say generally the simplest group) is always that which

arises from the repetitions of an individual operation, whose

order, therefore, is equal to the period of the operation in

question; such may be called respectively cyclic sub-groups

and groups.

But a mere enumeration of the things here required is not

sufiicient
;
we desire rather to take cognisance of the position

of the several operations, sub-groups, and so on, within the

main group. In this connection let us consider the following

* Cf, J. A. Serret, “ Trait6 d’alg^bre sap4rieure ” (Paris, 4th edition, 1879),

in German by Wertheim (Leipzig, 2nd edition, 1878-79)
;
C. Jordan, “ Traits

des substitutions et des Equations alg^briques '' (Paris, 1870); E. Net to,

“ Substitution theorie und ihre Anwendung auf die Algebra (Leipzig, 1882).

Particularly should reference be made to the articles which Herr Dyck has

published in the 20th and 22Dd volumes of the Mathematiscbe Annalen”

(1882-83), as “ Gruppentheoretische Studien.”



AND THE THEORY OF GROUPS 7

definitions. Let us agree first that by the product of two

operations S and T:
ST

we will understand that operation which consists in first allow-

ing S and then T to operate. In general

ST ia not ^TS.

If this occurs in a special case, we call the two operations

S and T 'permutahle^ We construct now in general

sTs-^= r,*

(where denotes that operation which compounded with S
produces 1, i.c., identity). If S and T are not permutable, T
is different from T

;

we say, then, that T jiroceeds from T by

transformation, and call T and T associates within the main

group. In fact, T' will correspond with T in all essential pro-

perties, e,g, (as we see at once), it has the same periodicity.

Now let T be replaced by the operations Tg . . .

. . . of any sub-group. Then the same thing happens (as

we apply each time the same S to every T) to the corresponding

T', so that, in fact, T\T\=^T\, when T^T^ coincides with Te-t

We say that the groups of T and T are then themselves con-

jugates within the main group.

We must consider now in particular the case where two

different sub-groups (the original and the transformed) coin-

cide with one another. If this occurs in the case of a set of

operations, which we may choose from the entire group for the

transformation of our sub-group, and if our sub-group thus

shows itself only associated with itself, then we call it a self-

conjugate sub-group. Every group contains, if we like to press

the definition so far, two self-conjugate sub-groups : viz., in the

first place, the totality of all its operations, i.e., the group itself,

and, in the second place, that simplest group which consists of

the identical operation alone. If a group contains, apart from

these improper cases, no self-conjugate sub-groups, it is called

irreduciUe, otherwise it is called composite.

In the case of composite groups we seek especially their

decomposition. We effect a decomposition of a group by giving

* If r = STS-\ (r)^=STS-\ STS-^^ST^S-^ generally

If, then, T"=l, (jr')”=l also and conversely, q.e,d.
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a self-conjugate sub-group, as extensive * as possible, contained

in it
;
then, again, a new one, self-conjugate within the sub-

group so obtained, &c., and so on till identity is reached. It

need hardly be said that this decomposition process admits of

much variation according to circumstances.

Beyond these simplest definitions, which come under our

notice in the case of individual groups, I must consider that

relation between two groups which is described as isomoiyhism.

Two groups are called isomorphic if their operations can be so

exhibited that always corres^ionds to S\ S'j^ provided that

Si is made to correspond to S\ and S^ to S\.

The isomorphic relation can be a mutually unique one
;
we

then speak of simple isomorphism. In this case the two groups,

from an abstract point of view, are in general identical, and it

is only in the significance of the two sets of operations that a

difference can exist. The sub-groups of the one group, there-

fore, give directly the sub-groups of the other group, &c., &c.

But the co-ordination may also be an ambiguous one, and

then' we describe the isomorjAism as nmUi])le, Here again to

every sub-group of the S group corresponds one of the S' group,

and vice versa, but the two sub-groups need not possess the

same degree. At the same time, associate sub-groups of the

one give similar sub-groups of the other. Therefore, also, self-

conjugate sub-groups of the one group are transformed into

similar ones in the other. In particular to identity, if we

attribute it to the S group, corresponds a self-conjugate sub-

group within the S' group and conversely.f

In what follows we shall have principally to do with ex-

amples of multiple isomorphism, in which to each S corresponds

one S', but to every S' two S^s are co-ordinated (so that the

number of the S's is double as great as the number of the S'^b),

We shall then simply speak of hemihedric isomorphism.

§3. The Ctclic Rotation Groups.

Turning now to the closer consideration of the groups which

are formed by the rotations which bring one of the configura-

* That is, one which is not contained in a sub-group more comprehensive

and at the same time self-conjugate.

t Of* besides the publications already mentioned, in particular: ** Capelli,

sopra I’isomorfismo . . .’’in Bd. 16 of ** Giornale di Matematiche” (1878).
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tions mentioned in § 1 into coincidence with itself, we must

^ve precedence to the simplest rotation groups, those which are

obtained by the repetition of a single periodical rotation. Evi-

dently, for such a group, two points on Our sphere remain

unaltered, which points we will call the two poles; and the

group consists, if it contains on the whole n rotations, of the n

rotations through an angle

27r 47r 2(w— l)7r

n n n

round the axis joining the two poles.

We agree in the first place that any two rotations of this

group are permutable with one another. Therefore every indi-

vidual rotation, as well as every sub-group which can be com-

posed with individual rotations, is only associated with itself.

But whether such sub-groups exist depends on the character

of the number n. If n is a prime number, the existence of a

proper sub-grouj) is a priori excluded (because its degree must

be a factor of n)
;

if n is composite, there is, corresponding to

,every factor of n^ one and only one sub-group whose degree is

equal to this factor.* We shall obtain a decomposition of our

group if we first seek the sub-group whicli in this sense cor-

responds to the highest factor contained in and then further

treat the sub-group thus obtained in the same way.

If we like to familiarise ourselves with the idea of isomor-

phism here directly, we observe that our group is simply

isomorphic with the totality of the “ cyclic permutations of

any n elements taken in a definite order

:

(^o> * • • •

In fact, we can establish a correspondence between the per-

mutations alluded to and the rotations which we have been

considering most simply by geometrical means. We have only

to construct the n points

:

(Zq, (ZgJ • • • •

which are derived from an arbitrarily given point by our

rotations, and now remark how these points are permuted

amongst themselves by the rotations.

* I make these and similar statements in the text without proof, because

they will either be self-evident to the reader, or must be apparent to him,
without further proof, on a little retiection.



lo I, I—THE REGULAR SOLIDS

It is superfluous to spend more time over such obvious

matters. We had to introduce them because the cyclic groups

are, so to say, the elements from which all others are con-

structed.

§4. The Group of the Dihedral Rotations.

Turning now to the configuration of the dihedron, I beg the

reader—here and in the similar developments of the following

paragraphs—to make the corresponding diagrams, or to think

out for himself directly by aid of a model—which is easily con-

structed—the properties under consideration. For we are

treating of concrete matters, which may easily be conceived

with the assistance of the suggested aids, but which may occa-

sionally offer difficulties if these are neglected. I should also

have had throughout to lay down these developments much
more in detail, had I not wished to take for granted the

reader’s co-operation in the manner explained.

We have already named that great circle on our sphere

which carries the n summits of the dihedron the equator, and

have also already marked the two corresponding yoles. Then

it is clear from the first that the dihedron is transformed into

itself by the cyclic group of n rotations for which these poles

remain unchanged. But the group of the rotations belonging

to the dihedron is not thereby exhausted. We will mark a

new point on the equator, midway between some two conse-

cutive dihedral points
;
the points so obtained we call the micU

edge iioinU of the dihedron. We then further describe that

diameter which contains a summit or a mid-edge point of the

dihedron as a secondary axis thereof. There are n secondary

axes of the dihedron
;

if is odd, each of these contains one

summit and one mid-edge point
;

if is even, the secondary

axes separate into two categories, according as they connect

two summits or two mid-edge points. In every case the dihe-

dron remains unaltered if it is turned right round on any one

of these secondary axes : i,e.y if it is rotated through an angle

TT round the secondary axis. Thus, by the side of the cyclic

group of n rotations already explained, there are arrayed n
other rotations, each of the period 2.

Besides the rotations here enumerated the dihedron greyu'p con--
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tains no others. In fact, we recognise in the following way
(which will be again applied later on) that the number of the

dihedral rotations must be equal to 2n. We consider, first, that

every point of the dihedron can be transformed into every other

point by means of a dihedral rotation, which admits of n
possibilities, and then that, while we keep one summit fixed,

the dihedron can only be brought into coincidence with itself

in two ways, viz., by a revolution on the secondary axis, which

passes through the summit in question, and by the identical

operation. Now the number of dihedral rotations must evi-

dently be equal to the '^rodnet of the two factors
;

it will there-

fore be equal to 2n, q,e.d.

I will not now weary the reader by enumerating all the

sub-groups contained in the dihedral group. Let us rather

consider forthwith our first cyclic group of n rotations, and

prove that this^ as a sub-group within the main group of the

dihedron^ is self-conjugate. In fact, let us go back to the

definition of § 2. We denote by T, T', rotations round

the principal axis of the dihedron, and by S any other dihe-

dral rotation. Then our assertion requires us to show that

STS^^ — T. But if S itself denotes a rotation round the

principal axis, this relation is self-evident
;
and if is a

revolution round a secondary axis, then the effect of this

revolution, so far as the principal axis is concerned, will be

reversed by the operator /S“*^ following, from which our rela-

tion again results.

We can refer the proof here given to a general principle,

which we introduce here the more readily because in the sequel

it will be repeatedly applied. Let us agree first that we will

describe in our configurations all such geometrical figures as

proceed from one another by an operation of the correspond-

ing group as conjugates. We npw construct all figures which

are associate with a given one. Let be those operations of

our group which have the property of leaving unaltered every

one of the figures so constructed. Then the evidentlyform
a self-conjugate sub-group within the main group. For every

operation belongs itself to the T^y because S only effects

a permutation of the fundamental figures, which will be reversed

by 8’’^. The application of this principle to our case is clear.

We have only to consider the two poles of the dihedron as
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fundamental associate figures. It is here incidental (as far as

the general principle is concerned) that those rotations, which

leave one of these poles unaltered, do not in general differ from

those which transform both poles together into themselves.

By similar reflexions we determine those among the dihe-

dral rotations which are associated with one another. I say

with regard to this, that now, of the rotations round the

priiwipal axis, those two which rotate through
2/^7r

n

are conjugates,' while the revolutions round the sceondary axes,

for n uneven, are all associates, hut, for n even, separate into

two categories of conjugates. The first statement corresponds to

the circumstance that the two poles of the dihedron are respec-

tively equally affected by the two rotations round the principal

axis which we are comparing,*** the latter statement to the

earlier theorem that the secondary axes of the dihedron are

either all associates, or, for n even, divide into two sorts of

associated lines. And further, in both cases we apply a

general principle, which we can express by saying : Those two

operations are always conjugates which transform respectively two

associated figures analogously into themselves. I do not spend

more time over the proof of this principle.

If, finally, a decomposition of the dihedral group is required,

such an one is already implicitly contained in what has gone

before. As a sub-group at once the most comprehensive and

self-conjugate, we choose the group of n rotations round the

principal axis. This we treat further in accordance with the

theorems of the preceding paragraph. We define another group

of permutations of letters which is simply isomorphic with

the dihedral group. For this purpose we will now denote the

n summits of the dihedron in their natural order by

Uq, Uj, ....

Then we have first, as in the preceding paragraph, correspond-

ing to the n rotations round the principal axis, those cyclic

permutations of the aj^ which replace respectively by a^^^

(the indices being taken for the modulus n). We find, further.
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that by a revolution round the . axis which passes through the

point will be replaced by From both operations

together springs the metacyclic group,* which will be repre-

sented by the following transformation of indices

;

V = ±v-\-k (mod. n\

and this, therefore, is simply isomorphic with our dihedral

group, or—what is the same thing—is identical with it in an
abstract sense.

§ 5. The Quadbatic Gkotjp.

The explanations of the foregoing paragraj)h, as also the de-

finition of the dihedron in § 1, assume that n is >2. If n= 2,

the figure of the dihedron loses its definite character, inasmuch

as the summits of the dihedron can then be connected by
an infinite number of great circles. In accordance with this

we obtain, in the first place, as the corresponding group

of rotations, a so-called continuous ^ group. Interesting and
supremely important as the theory of the continuous groups is

in many respects, it will be of little moment in the following

pages. We will theirefore, in the case of ?i= 2, make the

figure of the dihedron definite by selecting from among the

infinite number of great circles passing through the two
summits a determinate one as equator. The principal axis of

the figure then forms with the two secondary an orthogonal

triad, and we obtain, in exact accordance with the rules of

the preceding paragraph, a corresponding group of 27i= 4

rotations. If we make the usual determination of co-ordinates

on the basis of this axial triad, the point x, y, z will be trans-

formed by these rotations into the other points ;

We thus denote generally with Kronecker every group of permutationb

of Oo, »!, . . . ttn which is given by /—cn-fife (mod. n).

t Of, the extensive investigations of Lie in the NorwegUchen Archiv (from

1873 onwards) and in Bd. xvi. of “ Math. Ann.*' Latterly, J*f. Poincariy in his

investigations (which we shall often quote) of single-valued functions with

linear transformations into themselves, uses the word ** continuous group ”

in another sense. He describes as such every group of infinitely many but
discrete operations, among which infinitely small transformations occur. This
modification of nomenclature appears, however, to me to be not to the purpose.



14 I, i—THE REGULAR SOLIDS

-y,

-X, -y, z.

Clearly our new group contains, apart from identity, only

operations of period 2, and it is incidental that we have con-

nected one of these operations with the principal axis of the

figure, and the other two with the secondary axes. So I will

give the group a special name which no longer recalls the

dihedral configuration, and call it the quadratic yroup. The
quadratic group has the special property, as is at once proved,

that all its operations are permutable.* Thus every operation

appears as only associated with itself.f We shall effect the

decomposition of the quadratic group by first descending to an

arbitrary sub-group of 2 rotations, for which one of the three

axes remains fixed, and tlioii passing from this to identity.

§ 6. The Group of the Tetrahedral Rotations.

We remarked above that, for all rotations which bring a

regular tetrahedron into coincidence with itself, the counter-

tetrahedron will also be transformed into itself. These tetra-

hedra, by their eight summits, together determine a cube. If

we now mark those 6 points on the sphere which correspond

to the middle points of the sides, we obtain the 6 summits of

a regular octahedron. We thus recognise already the close

relation in which the group of the tetrahedral rotations stands

to the octahedral group which we are now going to study.

We will complete our figure by adding thereto the rectangular

triad of the diagonals of the octahedron, and also the 4 cube-

diagonals (passing through the centre of the sphere).

Applying now the principles developed in § 4, we find,

first, that the tetrahedral group contains 12 rotations. In

fact, there are 4 associate tetrahedral points, and each of

It is easily shown that two rotations are only permutable if either (as in

the case of the quadratic group) their axes cross at right angles and each has

the period 2, or (as in the case of the cyclic group) their axes coincide.

t This is not contradicted by the fact that, in the more comprehensive group
to be now studied^ the 3 rotations of the period 2, which the quadratic group
contains, appear as equivalent.
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these summits remains unchanged by 3 rotations—by the

identical rotation, and by two rotations of the period 3 whose

axes are respectively the cube-diagonals which passes through

the tetrahedral point. We have ascertained at once, by what

has been said, that 8 of our 12 rotations possess the period

3. Of these (again in virtue of the principles enunciated

in § 4) four are conjugates, namely, all those sets of four
27r

which appear to rotate in the same sense, through an angle of —
o

^or round the summit of the tetrahedron which they leave

fixed. To these 8 rotations and identity are then added 3

more associated rotations of period 2. These are revolutions

round the 3 mutually rectangular diagonals of the octahedron,

which latter now appear as mutually conjugate, because they

are interchanged by each rotation of period 3. Together with

identity, the 3 rotations in question evidently form a quadratic

group.

We conclude at once that the quadratic group so obtained is

selfconjugate ivithin the tetrahed/ral group. For the 3 mutually

associated diagonals of the octahedron all remain unaltered for

the rotations of the quadratic group, and only for them. We
can therefore decompose the group of the tetrahedron by first

descending to the quadratic group, and then, treating this

further in the sense of the preceding paragraph
;
I omit the

proof that any other decomposition of the tetrahedral group is

not possible, and tliat generally, except the quadratic group,

there exist within the tetrahedral group no sub-groups other

than the simple cyclic groups which arise from the repetition

of a single rotation.*

Let us consider, further, the nature and manner of the

permutations which the 4 diagonals of the cube (which we
will shortly denote by 1, 2, 3, 4) undergo in virtue of the

tetrahedral rotations. First, we have the self-evident asser-

tion that by no one of the tetrahedral rotations (apart from

identity) are all the 4 diagonals of the cube left unaltered.

* Theoretically speaking, we generate all the sub-groups of a given group

by first constructing all the cyclic group mentioned in the text, and then

combining these with one another in sets of two, three, &c., in order. In

each individual case such a process can of course be considerably shortened

by appropriate considerations.
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There are, therefore, no 2 tetrahedral rotations which generate

the same permutation of the four diagonals of the cub*e.

Therefore the group of the tetrahedral rotations is simply isomor-

phic with the group of the correspomling permutations of the

diagonals of the cule,^

We see, in particular, that to the rotations of the self-con-

jugate quadratic group correspond the following arrangements

of the 4 diagonals

:

1
, 2 , 3

,
4

;

2
,

1
,

4
,

3
;

3
,

4, 1
,

2
;

4
,

3 ,
2

,
1

;

To these are added, if we proceed to the remainder of the

tetrahedral rotations, 8 more which arise from cyclic permuta-

tions of 3 out of the 4 diagonals. We have thus, as we see,

obtained just those 12 permutations of the 4 diagonals which

we are accustomed to call the even permutations.

§7. The Geoup of the Octahedral Eotations.

In the case of the group of the octahedral rotations, we

have, as has been already pointed out, essentially the same

configuration for a foundation as in the case of the tetra-

hedron. We will only further mark (on our sphere) the 12

points which correspond to the mid-edge points of the octa-

hedron, and construct the 6 diameters which contain a pair

of these points. These 6 diameters we call the cross-lines of

the figure.

Of course the octahedral group contains the 12 rotations of

the tetrahedral group, and indeed, as we can premise, as a

self-conjugate sub-group. For the 8 summits of the cube

admit of being distributed between the tetrahedron and

counter-tetrahedron in only one way, and these latter remain

both unaltered by thejbwelve rotations in question. In

Let US compare the behaviour of the 3 octrahedral diagonals. These,

since they remain unaltered for the operations of the quadratic group, are

permuted by the 12 tetrahedral rotations only in 3 ways, viz., cyclically.

With the group formed of these permutations, the tetrahedral group is then

isomorphic*
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addition to these, 12 more rotations then arise which interchange the

tetrahedron and connter-tetrahedron, so that the octahedral group

contains on the whole 24 rotations. These are : first, 6 rotations

—mutually conjugate—through an angle tt round the 6 cross-

lines of the figure, then 6 rotations through (therefore of

period 4) round the 3 diagonals of the octahedron. The
latter prove themselves also mutually conjugate. For the

4 rotations, for which the individual diagonals of the octa-

hedron remain unmoved, now participate as a self-conjugate

sub-group, in a dihedral group of 8 rotations. Similarly the

two rotations of period 3 round the same diagonal of the cube,

and therefore in general all rotations of the period 3, are

associate. For every diagonal of the cube is principal axis

of a dihedral group of 6 rotations. The rotations of period

2, on the other hand, separate into two sharply defined

categories, according as a diagonal of the octahedron or a

cross-line remains fixed by them. The decomposition of the

octahedral group is formed of course by descending first to

the tetrahedral group, and then to the quadratic group, &c., &c.

No other kind of decomposition exists, as we have now ex-

hausted in advance all the sub-groups contained in the octa-

hedral group.

Finally, we agree that the diagonals 1, 2, 3, 4, of the cube,

in virtue of the 24 rotations of the octahedral group, are per-

mutated in 24 ways. The octahedral group is, therefore, simply

isomorphic with the totality of the permutatiom of 4 elements^

§8. The Group of the Icosahedral Rotations.

The group of the icosahedron, to which we now turn, is for

us the most interesting of them all, because, as we shall show, it

is primitive, in contradistinction to the groups of the dihedron,

tetrahedron, and octahedron. It shares this property with those

cyclic rotation groups whose order is a prime number.

For the sake of investigating the group of the icosahedron,

let us imagine that (in addition to the 12 icosahedral points),

as we have said already, the 20 summits of the corresponding

pentagon-dodecahedron (which correspond to the middle points
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of the sides) are constructed on the surface of our sphere, and,

further, the 30 points which correspond on the sphere to the

mid-edge points of the icosahedron. The 12 icosahedral points

distribute themselves in pairs on 6 diameters, which we will

describe shortly as diagonals of the icosahedron. Similarly,

corresponding to the 20 summits of the pentagon-dodecahedron,

we speak of 10 diagonals of the pentagon-dodecahedron,

and finally of 15 cross-Clines containing by pairs the mid-edge

points.

We convince ourselves first that the total nnmher of icosa-

hedral rotations is 60. In fact, each of the 12 (evidently

mutually conjugate) icosahedral points remains unaltered on

the whole by 5 rotations. We have thus at once (of course

leaving the identical substitution out of the question), corre-

sponding to each of the 6 diagonals of the icosahedron, 4 rota-

tions of the period 5, in general, therefore, 24 rotations of this

kind. In the same sense the 10 diagonals of the pentagon-

dodecahedron give 10.2 = 20 i^otations of period 3, and the

15 cross-lines 15 rotations of period 2, whereby if we add

identity the totality of the 60 rotations is exhausted

:

24 + 20-fa5+l=60.

Of the rotations here enumerated the 15 of period 2, and

similarly the 20 of period 3, prove themselves respectively

associate
;
for the 15 cross-lines and the 10 diagonals of the

pentagon-dodecahedron are so, and, if we rotate round one of

these diagonals through ^ or it comes to the same, so far

as the main group is concerned, as if the two end points were

again associated. On the grounds of similar considerations

the rotations of period 5 are separated into two categories of

12 associates. The first category contains all rotations which
27r

turn through an angle of ± -g- round one of the diagonals of

the icosahedron, the other those whose angle of rotation

amounts to ±
o

With these data we have at once determined the cyclic sub-

groups which are contained in the icosahedral group. There

are, as we see, 15 such groups having n= 2, 10 groups having
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71= 3, 6 groups having 71 = 5; cyclic groups with the same n
are always conjugate.

These data are sufficient to prove that the icosahedral

group is simple. Namely, if a self-conjugate sub-group

existed, this would have to contain either all or none of the

cyclic groups having n= 2 (because these are associates), so

too of the cyclic groups 71= 3 or 7i= 5, either all or none.

But the groups 7i= 2, 3, 5, bring with them respectively 15,

20, 24 operations different from identity. If therefore we
denote by 77 , 77', 77", three numbers which can represent 0 or 1

,

the number of operations contained in the assumed self-con-

jugate sub-groups amounts to

:

1 + 15.
77 + 20. t7'4-24. 77".

But now this number, as wo remarked before, must be a factor

of the degree of ilie main group, and therefore of 60 ;
this

necessarily gives either

:

^ = ‘»?' = '>

7

" = 0
,

whereby our sub-group coincides witli identity, or

:

1
,

which means that the sub-group is not distinct from the main

group. The icosahedral (jro2ip is therefore simple^ q.e,d.

Next to the cyclic sub-groups we find in the case of the

icosahedron, as a glance at the model teaches us, for further

sub-groups, first, 6 conjugate dihedral groups having 71 = 5 and

10 associate dihedral groups having n= The former have

the diagonals of the icosahedron, the latter those of the pen-

tagon-dodecahedron as principal axes
;

the corresponding

secondary axes are contributed by the 15 cross-lines. We
might suppose that in a similar manner, corresponding to the

15 cross-lines, 15 dihedral groups would present themselves

having 71= 2, i.c., quadratic groups. Here, however, arises

the fact that in the case of the quadratic group the principal

axis is equivalent with the two secondary axes. In corre--

spondence with this we obtain only 5 mutually conjugate guad^

vatic groups. These correspond one by one to the 5 rectangular

triads into which we can divide the 15 cross-lines.

In these quadratic groups we have encountered that property
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of the icosahedron which in the following pages will interest

us most of all. Inasmuch as only 5 rectangular triads, as

we have remarked, can be formed out of the 15 cross-lines,

each of these triads must remain unaltered, not only by the

rotations of the corresponding quadratic group, but on the

whole for 12 icosahedral rotations. It can he shown that these

rotations form a tetrahedral grcrwi). In fact, the 8 summits

of the cube which corresponds to the rectangular triad to

be considered are all included in the 20 summits of the

pentagon-dodecahedron.* There are, therefore, contained eo

qm among the icosahedral groups those 8 rotations of period

3, which, together with the rotations of the fundamental

quadratic group, form a tetrahedral group. We will also

expressly agree that the 5 tetrahedral groups so formed are

associates.

Leaving again the proof that, besides those enumerated, no

other sub-groups of the icosahedral group exist, let us only

further observe the isomorphism which arises in the case of the

icosahedral group from the existence of the aforesaid 5 rectan-

gular triads. It can be shown that for every rotation of period

6 these triads are cyclically interchanged in a definite order,

For each rotation of period 3, on the other hand, 2 of the

triads remain unaltered, and only the other 3 are interchangec

in cycle. Finally, it appears that for every rotation of perioc

2 one of the triads remains unaltered, while the other 4 ar(

interchanged in pairs. In this manner it is shown that tin

group of the 60 icosahedral rotations is simply isomorphic witl

the group of &Q even permutations of 5 things.

We could of course here, as in former cases, have exhibitec

the essential isomorphism of our groups with certain group!

of permutations of symbols, and then have transferred to th(

former the results which are found in the text-books witl

regard to the latter groups. Now we have investigated ou

groups directly, i.e., by means of the figures themselves, it wil

be a useful exercise to compare the results obtained by us wit]

the known properties of isomorphic groups.

* One sees occasionally (in old collections) models of 5 cubes, which intei

8 ect one another in such a way that their 5 . 8 = 40 summits coincide in pair

and represent the 20 summits of a pentagon-dodecahedron.
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§ 9. On the Planes of Symmetry in our Configurations.

For the further progress of our developments it is useful to

construct the appropriate planes of symmetry of our configu-

rations, i.6., those planes with respect to which the configura-

tion is its own reflexion, and then consider the partition of the

sphere which is effected by these planes.

In the case of the dihedron, we can construct, besides the

plane of the equator, n other planes of symmetry, viz., those

planes which contain, besides the principal axis, one of the

secondary axes. By means of these (?J+ 1) planes, the sphere

will be cut up into An congruent isosceles triangles, which have

2 angles =2 and one angle =-. Of such triangles 4 meet

in each dihedral point and in each mid-edge point, and 2n in

each of .the two poles, at equal angles.

In the case of the regular tetrahedron^ there exist 6 planes

of symmetry, viz., those planes which, passing through an

edge of the tetrahedron, are at right angles to the opposite

edge. Consider for a moment a tetrahedron proper, limited

by 4 planes, situated in space. Clearly each of the 4 equi-

lateral triangles in these planes will be cut up by the planes of

symmetry, through the agency of its 3 perpendiculars, into 6

alternately congruent and symmetric triangles. If we now
transfer this partition by central projection on to the sphere,

we have on the latter 24 alternately congruent and symmetric

triangles, of which each exhibits the angles, and
O o Z

which at the summits of the original tetrahedron, as also at

the summits of the counter-tetrahedron, meet in sets of 6, at

the summits of the corresi^onding octahedron in sets of 4, with

angles respectively equal.

In the case of the regular octahedron^ in addition to the

planes of symmetry of the tetrahedron, which as such are

retained, 3 more arise : those planes which contain 2 of the 3

diagonals of the octahedron. By the 9 planes thus obtained,

the surface of the octahedron (which we will suppose for a

moment to be a solid proper, constructed independently in

space), consisting of 8 equilateral triangles, will be partitioned

in a manner just like that in which the surface of the tetra-

hedron has been. Passing by central projection to the
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sphere, we obtain thereon 48 alternately congruent and sym-

metric triangles with the angles which meet at the

summits of the octahedron in sets of 8, and at the ends

of the cross-lines (the mid-edge point of the octahedron)

in sets of 4. This is that partition of the sphere which is

well known in crystallography in the case of the so-called

AchtundvierzigBadiner. Finally, in the case of the icosahe-

dron, we have, as planes of symmetry, those 15 planes which

contain two of the six diagonals of the icosahedron. These

partition the 20 equilateral triangles which are contained in

the bounding surfaces of the icosahedron considered as a solid,

exactly in the manner now several times considered. We
obtain, therefore, 120 alternately congruent and symmetric

triangles on the sphere, whose angles are
g, g,

and which

meet in the summits of the pentagon-dodecahedron in sets of

6, in the summits of the icosahedron in sets of 10, and in

the ends of the cross-lines in sets of 4. Let us consider the

similarity of the results thus obtained in the four cases. In

each we have to do with a partition of the sphere into alter-

nately congruent and symmetric triangles *** which meet in sets

of 2v in those points of the spherical surface which remain

unmoved by a cyclic sub-group of v rotations. Of the num-
bers V there are in every case three, corresponding to the

summits of the several triangles. They appear, in order of

magnitude, collected in the following table, wliich may be kept

in view during the later developments

:

Dihedron 2 2 n

Tetrahedron

.

2 3 3

Octahedron . 2 3 4

Icosahedron

.

2 3 5

* When we speak above, in the case of the dihedron, shortly of congruent

triangles, no absurdity is involved, for we can, even in this case, describe the

triangles as alternately congruent and symmetric, inasmuch as it is with

iscsceles triangles that we have to do.
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We observe at once that the number of the triangles is in

every case double as great as the degree of the corresponding

group of rotations (which we will in future denote by N)

;

they amount in the four cases respectively to 4??, 24, 48, 120.

We complete these developments further by constructing,

in the case of the cyclic (jrouys also, certain planes which we
call their symmetry-planes. These are to be simply such n
planes, passing through the corresponding pole, as proceed

from one another by means of the rotations of tlio group.

These planes decompose the sphere into 2n congruent (or, if

we prefer, alternately congruent and symmetric) lunes, of

angular separation of which each extends from one pole to

the other.

§ 10. General Groups of Points—Fundamental Domains.

We now apply the spherical partitions which we have ob-

tained to the closer study of our groups of operations. We
consider, first, the groups of points which arise if we submit

an arbitrary point to the N rotations of our group, and which

we will call the aggregate of points or group of p)oints belonging

to our group) of operations. Here we will suppose, for the sake

of a clearer representation and more convenient description,

the bounded regions on the sphere to be alternately shaded and

not shaded. It is manifest a priori that for the rotations of a

single group each shaded region will be transformed once, and

only once, into every other shaded region, and similarly each non-

shaded region once, and only once, into each non-shaded region.

In fact, the number N of the rotations, as already remarked,

coincides in every case with the half of the total number of

regions.

If, now, any point on the sphere is given (which may
belong either to a shaded or non-shaded region), we can, in

virtue of our space-partition, without further trouble give the

{N— 1) new positions which it assumes by means of the (W— 1)

rotations—distinct from identity—of our group; we have

simply to mark those (iV— 1) points which are situated within

the (iV— 1) remaining shaded or non-shaded regions, in just

the same way as the initial point in the original region. In
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general the N" points of the group of points so arising are all

distinct
;
they only partially coincide when the initial point

retires to a summit of the surrounding region. If, on the

whole, V shaded (and of course the same number of non-

shaded) regions meet at this summit, then the point will

remain unaltered by v rotations of the group, and only assume

N
on the whole — different positions. The special sub-groups

of points so arising are none other than those which we have

otherwise considered in the foregoing paragraphs in our in-

vestigations of the individual groups.*

With the groups of points here constructed is connected

a conception which will later on be of use to us. We describe

as the fundamental domain of a group of point-transformations

in general such a portion of space as contains one^ ami only one,

point of every comsponding group of points,^ The boundary

points of such a domain are connected naturally in pairs by

means of the transformations of the group, and only half of

them can be attributed to it. I say now that, for our groteps,

we may consider as a fundamental domain in any case the com-

bination of a shaded and a non-shaded region. In fact, if we
allow a point to traverse a region thus defined without crossing

its own track, the corresponding group of points cover uniquely

the whole surface of the sphere.

§ 11. The Extended Groups.

Applying the suggestions of § 1, we now extend the groups

hitherto considered, by connecting with their rotations the

reflexions of the respective configurations on the planes of

symmetry.

Here also the partition of the sphere given in § 10 will be

of service to us. In fact, we recognise at once that each several

region there distinguished, shaded or non-shaded, is a funda-
mental domain of the extended group, and that therefore the

For the general groups of points mentioned in the text, consult the
work of Hess already alluded to, where they are used for the purposes of the
theory of polyhedra.

t Cf, for different uses of this notion (so important for all applications of

the theory of groups to geometry) my “New Contributions to Kiemann’s
Theory of Functions,” in the xxi. Bd. Math. Annalen (1882).
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exie'iided group coiUains just 2N operations. As regards the

proof of this statement, let us note, first, that a combination of

the rotations hitherto considered with the reflexion on a single

plane of symmetry suffices for turning each of our shaded

regions into each of the non-shaded regions. On the other

hand, let us reflect that a deformation of the sphere which is

known to be a rotation, or to spring from a combination of a

rotation with a reflexion, is completely determined as soon as

we know that it transforms one of our regions into a definite

one elsewhere.

The fundamental domains so obtained have, in contradis-

tinction to those considered in the foregoing paragraphs, the

peculiarity of being in no wise arbitrary. In fact, their

boundary points are a priori determined by the fact that each

remains unaltered by a determinate operation of tlie extended

group, viz., by reflexion on a plane of symmetry. We can

generate the extended group by connecting the initial group

of rotations with the reflexion on that particular piano of

symmetry in which the boundary point under consideration is

contained. Therefore the special groups of only N points,

which spring from the boundary points of the fundamental

domains hy the application of the extended group, are at the

same time general groups of points in the sense of the fore-

going paragraphs. Moreover, they are the only ones amongst

these groups of points which at the same time remain unaltered

by the operations of the extended group. Of course the

N , ,

special point-groups of — points just mentioned, corresponding

to the summits of the fundamental domains, are also included

among them.

We might here have investigated our new groups, the ex-

tended groups, in the same sense by the theory of groups, as

we have done for the original groups in the preceding para-

graphs. I should like to recommend such a discussion to the

reader as an appropriate exercise, and limit myself here in

this direction to the following statement :—The original group

is in every case manifestly self-conjugate within the extended

group. But, besides this, the extended octahedral and icosa-

hedral groups, as well as the extended dihedral group for n
even contain a self-conjugate sub-group of only two operations.
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This springs from a double application of that transformation

which replaces every point on the sphere by that diametrically

opposite to it.*

§ 12. Generation of the Icosaiiedeal Gkoup.

Hitherto, in our consideration of groups, wo have supposed

the individual groups ready to hand, and sought to obtain a

uniform view of their different operations, and of the position

of these latter with regard to one another. In the following

pages, however, we shall find a more one-sided process of

practical value. Our business will be to introduce the groups

by aj)propriate gemcraiimj operations, ix,, to present operations

from which, by repetition and combination, the group in ques-

tion arises.

We treat, first, in this sense the group of the icosahedral

rotations, here again taking advantage of the partitioning of

§ 9 and the fundamental domains of § 10 respectively. The

principle, which here serves as our basis, has been already

implicitly applied in the preceding paragra])hs. yince each

fundamental domain of a group will only be oblained from

any other by one operation of the group, we can naiiie the

different fundamental domains after the operations, in virtue

of which tliey proceed fi'om an arbitrary one amongst them,

which we will denote by 1, as being the initial domain. Effect-

ing this nomenclature, we obtain directly from it an enumera-

tion of all the operations of the group.f

We will suppose, for the sake of a more convenient mode

of expression, that the icosahedron is so placed that one of

its diagonals runs vertically. For a first fundamental domain

we then choose one of the 5 isosceles triangles, which, endowed

* As especially remarkable, I will add that the extended octahedral group,

consisting of 48 operations, contains 3 different self-conjugate sub-groups of

24 operations. These are first, as is manifest, the original octahedral group

and the extended tetrahedral group, and then that group which consists in a

combination of the original tetrahedral group with the operation just men-

tioned in the text. Only the latter group, not the “extended” tetrahedral

group, is a sub-group of the “ extended” icosahedral group.

t Consult here the already mentioned “ Gruppentheoretischen Studien’*

of Herr Dyck, in Bd. xx. of Math. Ann. The principle mentioned in the text

is there applied to the general purposes of the theory of groups.
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with angles
27r TT TT

5
’ 3’ 3

,
are grouped on the sphere round the

uppermost summit of the icosahedron : such a triangle is a

fundamental domain of the icosahedron group, because it is

composed of two neighbouring triangles of the partitioning

given in § 9. The five isosceles triangles in question form, we

will say, a first pentagon of the pentagon-dodecahedron belong-

ing to the icosahedron. Those sides of a triangle which are

at the same time sides of a pentagon we will describe as the

ground-lines of the figure in question.

We now denote by S the rotation in a determinate direc-

27r
tion through an angle, -, round the vertical diagonal of the

icosahedron. Thus the 5 fundamental domains before men-

tioned will proceed in their natural order from the first of

them by the rotations :

1, 5, S\ 6^, S\

we will therefore denote the domains by the symbols

/4= 0, 1, 2, 3, 4.

Wo now take a second icosahedral rotation, T, of period 2.

This shall be the revolution round that cross-line of the

icosahedron, one of whose ends is the mid-edge point of the

ground-lino of 1. By means of this T, our 5 domains are

transformed into the domains S^2\ which, taken together,

again make up a pentagon of onr pentagon-dodecahedron,

and, in fact, that one which has in common with the first

pentagon just considered the ground-line of the first funda-

mental domain. Applying now again the operations S, #S^, S^y

we obtain from the new pentagon the remaining 4 attached to

the first pentagon. Therefore, the fundamental domains of

those 5 pentagons which surround the first one are represented

by:

{fly v = 0, 1, 2, 3, 4).

A third icosahedral rotation, also of period 2, shall now be

denoted by U, of which, however, we shall see that it has no

independent importance, but is compounded of the two S and

T. The axis of U shall coincide with one of the cross-lines

which run horizontally, and, indeed, to make everything deter-

minate, we will choose that horizontal cross-line in particular
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which stands at right angles to T. Clearly the rotation U so

determined transforms the 6 upper pentagons of the penta-

gon-dodecahedron which we have hitherto considered into its

6 lower pentagons, which were still wanting. Therefore we

find at once that the thirty fundamental domains of the icosa-

hedral group which were still ivanting are given hj the following

:

S^TS^U, {fi, v«0, 1, 2, 3, 4).

From the fundamental domains we now turn back to the

rotations. We then have the proposition, the deduction of

which was the object of our present considerations, viz., that

the 60 rotations of the icosahedral group which are given hy thefoU
lowing scheme

:

(/*, v«0, 1, 2, 3, 4).

Here the rotations

:

/Sf^ Sf-U

form the dihedral group ^= 5 belonging to the vertical

diagonal of the icosahedron, and the rotations :

T, U, TU

give, when taken together with identity, one of the 5 quadra-

tic groups occurring in connection with the icosahedron.

If we draw a figure, as seems indispensable for the full

understanding of the theorems here developed, or if we operate,

as is more convenient, by means of a model of the icosahedron

on which the different fundamental domains are marked out,

and the corresponding symbols introduced, we can of course

at once read off all the operations which make up any sub-

group of the icosahedral group. We have only to mark those

fundamental domains which proceed from the domain 1 by the

operations of the sub-group.*

It remains for us to generate Z7, as we proposed, by a

combination of S and T, To this end we subject, say, the

fundamental domain S^TS^ to the operation T, Thus arises

E.g,t I find for the tetrahedral group which embraces the quadratic

group just noted

:

1, T, STS’, S>TS, S*TS*, 8*TS>

V, TU, 8TS*U, S^TSU, S^TS^U, S*TS*U.
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a fundamental domain S^TS^T which belongs to one of the

pentagons of the lower half. But we have previously called

this same domain (as a glance at the figure shows) TS^U.
Hence :

S^TS^T=^TS^U.

In this equation let us consider U as the unknown. We solve

this equation by first multiplying by T on both sides of the

left-hand expression and then by and recalling that J*=l,
^*=1, In this manner we have

:

U^S^TS^Tm\

and this is the relation we wanted.

§ 13. Generation of the other Groups of Rotations.

As regards the generation of the other groups of rotations,

this can follow without further trouble by the same means as

we have now applied to the case of the icosahedron. But for

the first of these, the cyclic and dihedral groups, the matter is

so simple that we need no special method, and for the tetrahe-

dron and octahedron we propose in the sequel to use a method

of generation which runs parallel with the decomposition of

these groups before noted. I gather together here the results

in question, which are easy to verify without special deduction.

Now, as regards the cyclic groups, their operations will be

manifestly given by the symbols

:

(m = 0, 1, 2, . . .
(n-1))

where S denotes the rotation through the angle — . We obtain

the group of the dihedron if we annex any revolution T round

one of the auxiliary axes of the dihedron, and therefore add to

the operations the others :

S^T, (|a = 0, 1, 2, . . .
(n-1)).

In particular, the operations of the quadratic group are now

represented (in agreement with the data just given) by the

following scheme

:

1, S, T, ST.
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From the quadratic group we now ascend to the tetrahedral

group by annexing any one of the corresponding rotations of

period 3, which we will call U. The 12 rotations of the

tetrahedron will then be given by the following table :

1, S, T, ST,

U, SU, TU, STU,
U\ sm, TU\ STU\

Finally, we get the 24 rotations of the octahedral group on

annexing to the 12 rotations here enumerated the others

:

F, SV, TV, STV,
UV, SUV, TUV, STUV,
U^V, SU^V, Tmv, STmv.

Here F denotes any one octahedral rotation which is not con-

tained in the tetrahedral group, e,g,, a rotation of period 4

round one of the octahedral diagonals.

We here conclude these preliminary considerations. Their

object was to introduce into comparatively elementary geomet-

rical figures the ideas of the theory of groups, in such a form

that the group-theory reflexions and the geometrical mode of

illustration might henceforward supplement one another.
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CHAFTEll II

INTRODUCTION OF (« + »?/)

§ 1. First Presentation and Survey of the Developments

OF THIS Chapter

The essential stop for our further progress in developing

our train of thought is as follows: to consider the sphere

which we submitted to the groups of rotations, &c., and on

which wo studied the corresponding groups of points and

fundamental domains, as now the veliicle of the values of a

complex variable %— x+iy. This method of representation,

originating with Biemann, and first thoroughly expounded by

Herr (7. Neimann * in his “ Vorlesungen tlber Riemann’s

Theorie der Abel’schen Integrale,’’ is at the present day suffi-

ciently well known, so that I can make use of it immediately

;

besides, the formula) furnished in the following paragrajihs are

in themselves an efficient introduction to the theory.

In virtue of the rej)resentation thus introduced, the indi-

vidual system of points which we have hitherto considered

appears defined by an algebraical equation f{z) = 0, where the

degree of/ is identical with the number of points, as long as

none of these points retires to 2;= co
,
which declares itself, in

the well-known manner, by a fall of one unit in its degree.

We inquire what properties these equations possess corre-

sponding to the circumstance that the groups of points re-

presented by them are transformed into themselves by certain

rotations of the sphere, or by certain reflexions, &c.

Leipzig, 1865. Cf. for the general application of Riemann’s method my
treatise, Ueber Riemann’s Theorie der algebraischen Functionen und ihrcr

Integrale ” (Leipzig, 1882), Cf, again for the connection of this introduction

of {x-\-iy) with the projective treatment of surfaces of the second order my
work (to which I shall have further occasion to allude), “ Ueber binare

Formen mit linearen Transformationen in sich selbst,” in Bd. 9 of Math. Ann.

(1876), particularly at p. 189.
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With regard to this we have, first, the fundamental theorem,

which I will presently establish and define more precisely, viz.,

that every rotation of the {x+iy) sphere on its centre will be

represented hy a linear substitution of z

:

( 1 )

In fact, the z, which we can suppose extended with its com-

plex value over the original sphere, and the z', which, in just

the same way, we can suppose extended over the rotated

sphere, are, in virtue of the interdependence of the two

different spheres, related to one another uniquely without

exception
;

and, moreover, since the relation between the

two spheres is one of conformity,* they are analytically re-

lated to one another
;
they are, therefore, by known theorems,

linearly de]^endent on one another.f So, too, we recognise

that, to the reflexions and other inverse operations (which

spring from the composition of a reflexion with arbitrary rota-

tions), correspond formulae of the following kind

:

(
2)

•yz+ S

where z denotes the conjugate imaginary value (a;— iy) of z.

Our equations f{z) = 0 havCy therefore, the property of remaining

UTialtered by a group of linear substitution (1), or, in some cases,

by an extended group which contains, alongside of substitutions

(1), a corresponding number of substitutions (2).J

It is indeed one of congruency, since the corresponding points of either

sphere can be brought into coincidence with one another by rotation.

t Unfortunately we find the fundamental theorems of the function-theory,

such as we are now considering, developed in the text-books in such a form

that the conformable figure which is furnished by the functions is only inci-

dentally taken into consideration
; it is, therefore, for our purpose necessary

to make, in every case, a certain modification and combination of the proofs

explicitly given
;
these, however, can present no difficulty to the reader, since

we are always concerned with quite elementary relations.

X The same, of course, is true of equations -P(z) = 0, which, when combined,

represent several groups of points such as are considered in the text. We can
consider these equations P{z)—0 as a generalisation of the reciprocal equations

of lower analysis, inasmuch as the latter also remain unaltered by a definite

group of linear substitutions, viz., by the simple group z'= s, e'=: -
z*
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I must now consider at once the analytical method which

occurs spontaneously in the establishment of the equations

f(z) = 0 and in the study of their mutual relations, and which,

by virtue of its more varied aspects, excels in many respects

the former reflexions based on geometrical illustrations : that

of the homogeneoits variables. If we replace z hj z^\ z^, the

substitution (1), (and analogously every substitution (2)), splits

up into two separate operations

:

(3 )

where now the absolute value of the determinant (aS — /?7) of

the substitution will be of especial importance. Instead of

the equations /(2) = 0 or 1^ = 0, we shall then have to

consider the form f{z^, zf^, on multiplying by a proper power of

This form has always the same degree (a first point in

favour of the homogeneous notation) as the corresponding

group of points, the occurrence of the point «= oo being now
indicated by a factor z^ of /. We recognise at the same time

that, with the transition to a form /, a new distinction arises.

For/ need not remain absolutely unaltered for the substitu-

tions (3) ;
it can change to a factor prfes, and our business will

be to determine this factor. Moreover, we obtain, by putting

in the foreground the consideration of the theory of forms, a

bond of union with that important theory of modern algebra

which is described as the theory of invariants of binary forms.

This will be of service to us in the more complicated cases, in

order to deduce from one form/ all the rest in a simple manner.

I may mention at once the result in which the considerations

here explained culminate (see the paragraph before the last of

this chapter). It is this
;
that for each group of linear siobsti^

tutions (1) corresponding to our group of rotations^ a correspond’-

ing rational function

:

(4) Z=B{z),

will be founds which represents the different groups of points

belonging to the group, if we equate it to a parametric constant.

But at the same time we obtain, if we actually represent those
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groups of substitutions, a series of new problems, from which,

later on, our further development will have to start.*

§ 2. On those Linear Transformations of
{
x -\-iy

)
which

Correspond to Rotations Round the Centre.

Let the equation of our sphere, relatively to a system of

rectangular central co-ordinates, be

:

(
5)

We then introduce the complex magnitude by

first exhibiting (x+iy) in the usual manner in the f-17-plane

(the equatorial plane), and then, placing this plane by stereo-

graphic projection from the pole f=0, 77= 0, in a (1, 1)

relation with the surface of the sphere. We thus obtain the

formulae

:

(6)
= =

or

:

(7 ) ^

As we particularly want to determine these linear substitu-

tions of z which correspond to the rotations of the sphere, the

diametral points of the sphere are of interest to us (inasmuch

as one pair remains unmoved in every rotation). In order to

derive, with reference to these, a preliminary theorem, we
substitute in (6), instead of f, r;, f, their negative values.

Then we have for the diametral point

:

ir — zy =
1 + f

’

and therefore, by multiplication with the values (6) of (x+iy)

and attending to (5 )

:

Consult throughout the work already mentioned, “ Ueber binare Formen
mit linearen Transformationen in sich selbst,** in Bd. 9 of Math. Ann. (1876).

It is there that for the first time that process of thought is displayed from its

foundations which now reaches a detailed exposition in the developments of

the first and second chapters of the text. 1 had communicated the principal

results in June 1874 to the Erlanger physikalisch-medicinische Gesellschaft

(c/. the Sitzungsberichte).
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(8) (x 4- - »y)
= - 1

1

or, if we put (x+iy)=re^,

(9) + =
r

Diametrically opposite points have arguments whose absolute values

are reciprocal, while their amplitudes differ by ir.

We consider now, first, the case where the axis 0— oo

(which stands at right angles to the plane of the equator) is

rotated through an angle a, and let this rotation, looking from

the outside on to the point oo (which we suppose placed on

the upper side of the equatorial plane), take place in a sense

opposite to that of the hands of a clock. A point, which ori-

ginally had the argument of z, will, after the rotation, have the

argument z\ We inquire how is connected with z. Evi-

dently in the same way as (f'+^V) with (f+^7;), if we rotate

the ^-plane (the equatorial plane) in the way given
;
for the

denominator (1 — f) in the formula) (6) remains unaltered by

the rotation. But now we have for the said rotation of the

ff^-plane, if, as usual, we let the positive ^-axis extend to the

right, and the positive 9;-axis away from us

:

^ . cos a — rj. sin a,

rj' . sin a+ T] . cos a,

or,

+ 17]' = (cos a-\-i sin a) + ^7/)

;

whence follows in the well-known manner

:

( 10)

If we now wish to represent analogously a rotation through

an angle a, for which the points f, 77, f, and — f, —77, — f, on the

sphere remain unmoved, and for which the first point plays

the same part as the point 00 did before—so that, therefore,

if we view f, 77, from without, the rotation takes place in a

sense opposite to that of the hands of a clock—we have in (10),

instead of z and such a linear function of z and respectively

as becomes infinite at f, 77, and vanishes at — —77, — f.

Such a linear function is, however, determined, save as to a

factor
;

it runs in its most general form

:
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i~C

But it is unnecessary to determine this factor more precisely

by any kind of convention, because it must of itself drop out

of the formula to be established. In fact, we obtain, on sub-

stituting in (10) for z our expression, independently of C

:

z +
1 + f

Z-f

z —
i-C

- ^ gia •

^

I+ ^r;

1-f

or, after an easy transposition alteration

:

(11) 4“
. i(l±iLt(^±^)

2Vii6‘ is therefore the general Jorimda for im arhiirarij rotation,

for whieh ive sought. If we solve it for it will be con-

venient to introduce the following abbreviations

:

(12) ^siri- = a, fsm~ = c, cos~=f^,

where evidently

:

(13)

We then obtain the simple form

:

(ML\ 2' = {d-\-ic)z-{h--ia) *

'
' (b-{-ia) z-\- {d— icy

We have, as we might suppose a priori, obtained by this

method two forimdce for every rotation of the sphere. The

rotation remains unaltered, namely, if we increase the angle of

rotation a by 'lit. Now the consequence of this is, by formula

(12), that all 4 magnitudes change their sign. This corresponds

to the circumstance that the determinant of the substitution of

(14) will be equal to therefore by (13) equal

See the note by Cayley in Bd. 16 of Math. Ann. (1879), “ On the Corre-

spondence of Homographies and Rotations,” where this formula is for the first

time explicitly established.
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to 1, which in respect to the signs of a, b, c, d, admits of just

two possibilities.

At the same time wo have obtained a convenient rule for

calculating the cosine of half the angle of a rotation which is

given in the form

:

^ Cz+D'

and thereby estimating the periodicity of this substitution (so

far as we are concerned with periodic substitutions). For

manifestly we have, by comparison with (14):

/I r\
a A-\-D

( 1 ,)

§ 3. Homogeneous Linear Substitutions—Their

Composition.

We will now, as wo proposed in § 1, split up formula (14)

into two homogeneous linear substitutions by simply writing :

/ = (d+ ic)zi - (b -

U2 = (/>-(
^ \z\ = {h+ ia)z^ + {d- ic)z.^.

Hero a, 6, c, of, denote, according to formula (12), in the first

place, arbitrary real magnitudes, whicli are subject to the

condition

:

Meanwhile we may remark that the same formula, with

this condition maintained, provided we regard a, h, c, d as

susceptible of arbitrary complex values, represents at the same

time the most general binary linear substitution of determi-

nant 1. Hereby the formiilm of composition, which we shall

immediately establish, acquire a more general significance,

which, however, in the developments to which we must here

limit ourselves, need not be further considered.

To deduce the formulse of composition in question, let

V^'2 = (b+ ia)z^ + (d- ?c);^
2 ,

be a first substitution, and similarly

a second. IVe obtain the substitution ST, arisingfrom the com^
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position of these , by eliminating from the two systems.

We naturally put the result again in the form (16), and so

write

:

ST
+ ia")zi + (d"— ie")z2.

Then direct comparison gives the following simple result

:

(17)

fa" = (ad'+ a'd) - (be' - b'e),

h" = (hdf+ h'd) - (ea' - cfa),

c" ^(cd'+ e'd)-^(ah' ---a'h),

d"= -aa'-hh'-^ce'-\.dd'.

We have thus, as we may observe, the symbolic notation ST
applied in the same sense as in the preceding chapter, if we

effect first the substitution S, then the substitution T.

We shall immediately apply the formulae (14), (16), (17),

in the establishment of the groups of substitutions which now
correspond to the groups of rotations of the preceding chapter.

First, however, we must consider the significance which these

formulae claim in a more general sense. That it was proper,

in the treatment of rotations round a fixed point, to introduce

the parameters a, b, c, d, of the preceding paragraph Tor at

least their quotients ~, Euler had already found.* It

appears, however, that the formulae of composition (17) re-

mained still unknown for a long time, till tliey were discovered

by Rodrigues'^ (1840). Hamilton then made the same formulae

the foundation X of his calculus of quaternions, without at first

recognising their significance for the composition of rotations,

which was soon brought to light by Cayley.^ But the relation

of these formulae to the composition of binary linear substitu-

tions remained still unobserved
;
to Herr Laguerre is due the

“ Novffi Commcntationes Petropolitanae,” t. 20, p. 217.

t “Journal de Liouville,” 1 sdrie, tome v: “Des lois g^om^triques qui

r^gissent le deplacement,” &c.

X In fact, if we consider the quaternions

:

q — ai-\-y+ cl’-f- »
q' =«'»+ -f c'k-\-d\

the product thereof

:

qq'= q"= -j- d'k-\-d"

is exactly given by the formulae (17) of the text. It is interesting to consult

the first reports of Hamilton on his calculus of quaternions, especially his

letter to Graves in the “ Philosophical Magazine,” 1844, ii, p. 489.

§
“ Philosophical Magazine,” 1843, i, p. 141.
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credit of having first recognised this connection on the formal

side.* It first acquired a real importance by Riemann^s inter-

pretation of {x+iy) on the sphere, and especially by Cayley's^

formula (14).

§ 4. Return to the Groups of Substitutions—The
Cyclic and Dihedral Groups.

We now proceed to establish the homogeneous linear substi-

tutions of determinant which correspond, in the sense of

formulas (14), (16), to the groups of rotations previously inves-

tigated. Of course, the substitutions which we in this manner
obtain are, on account of the double sign of the parameters

ay by Cy (ly clouble as numerous as the rotations from which we
start. The group of substitutions is, therefore, in the first

place hemihedrically isomorphic with the group of rotations;

the question whether we cannot so limit or modify the group

of substitutions that simple isomorphism ensues, will not be

investigated till a later paragraph.

As regards the general rules of which we shall make use in

establishing the groups of substitutions, we shall of course, in

each case, provide for the system of co-ordinates a position

as simple as possible
;
and besides this, wo shall recur to the

propositions which we have established in §§ 12 and 13 of the

preceding chapter, with reference to the generation of the

several groups of rotations.

In the case of the cyclic groups and the dihedral groups,

the matter is so simple that we can write down the formulae

without more ado. It seems most convenient to let the two

poles considered in connection with these groups coincide with

the points and 2: = oo , Then we have, for the rotations

of the cyclic groups

:

“Journal de T^Icole polytechnique,” cab. 42 (1867) :
** Sur le calcul des

syst^mes Unbares.”

t Cf, especially, too, M. Stephanos* article, “ M^moire sur la representation

des homographies binaires par des points de I’espace avec application h.

I’etude des rotations sph^riques,” Math. Ann., Bd. xxii. (188.8), and also his

note “ Sur la th^orie des quaternions” {ibid.).

Or, as 1 shall say in future for brevity, where there is no fear of mis<

understanding : the “ homogeneous substitutions.*’
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.a a 2kTr
a = 6 = 0, c = sin

2 * « = COS
2 ,

a =—

,

and therefore for the 2n homogeneous substitutions of the cyclic

group :

ikir —ikir

(18) z'i = e'’«f«i,2'2 = e ™ (A= 0, 1, . . . (2m-1)).

If we now proceed to the dihedral group, we shall choose

one of the secondary axes, so that it coincides with the ^-axis

of our co-ordinate system in space (and therefore joins the

points 5:=+l and z= —1 on the sphere). We find for the

corresponding revolution :

(19) iz^, z\ = T izi,

and therefore, by combination with (18), for the homo-

geneous suhstiUitions of the dihedral group :

iktr -ikir

(20)

Z
Y — 6 ^ o — ^ •^2;

-ikir ikn

(Z; = 0, 1, . .
.
(2a~-l)).

2 1
=

Account has already been taken in these formulae of the

double sign of (10), since wo have allowed k to range, not

merely from 0 to {n—l), but from 0 to (2?i— 1).

We have in particular, as we will note expressly, for the

quadratic group the following 8 homogeneous substitutions

:

(21 )

. 2^1, 2; 2 — (
— if • z^

;

1^1= ~(-^T •
^'

2
=

(A- = 0, 1, 2,3).

.

§ 5. The Groups of the Tetrahedron and Octahedron.

In the case of the tetrahedron and octahedron we shall dis-

tinguish two different positions of the system of co-ordinates.

In the first case we allow, as appears most natural, the 3 co-

ordinate axes f, of our co-ordinate system in space to

simply coincide with the diagonals of the octahedron. In the

second case we rotate the co-ordinate system so obtained on its

(I’-axis through 45^, viz., so that (as proves advantageous later



INTRODUCTION OF x+ iy 41

on) the fj'-plane coincides with a plane of symmetry of the

tetrahedron.

Let ns begin with the consideration of the forirher position.

We can then make immediate use of formulas (21), just written

down, for the representation of the quadratic group. Kecall-

ing now, with regard to the generation of the tetrahedral and

octahedral groups, the data which we have prepared in § 13,

we will first construct the homogeneous substitutions which

correspond to the two rotations (

U

and U^) of period 3 round

one of the diagonals of the corresponding cube. Evidently

2 diametrically opposite summits of the cube have the co-

ordinates :

and since

:

COS
TT

3

1

2
== — cos

27r
sin

27r

we obtain for the homogeneous substitutions for which these

two summits remain unmoved (neglecting the double sign,

which occurs again here)

:

jL

Corresponding to this we have the two substitutions:

./ _ (± 1 + «>i - (1 - i)~^ _ (1 + ^>^ + (± 1 - »>3
^2

Combining t hese now in a proper manner with the substitu-

tions (21), u'v> obtain^ for the right sides of the 24 homogeneous

tetrahedral sahstitutionsy the following pairs of linear expres-

sions :

(22) - i‘ ziA zAfe, (— *•)*
. i] ( 4A.“

_(_*)». (

1

+ »')^i + ( =fc 1 — (± 1 + 0^1 —(2 2

(A; = 0, 1, 2, 3).

We pass to the octahedral group by adding a rotation F
through ^ round one of the 3 co-ordinate axes, say the f-axis.

2



42 I, 2—INTRODUCTION OF x+iy

For one of the two corresponding homogeneous substitutions

we have manifestly

:

(23)
l+^

n/2
^l» ^ 2

‘

1-i
'

n/2

In corresponchnce with this, we obtain the right-hand sides of the

24 homogeneous oetahedLral sichstitiitions stilt wanting in the table

(22), by multiplying, in eaxh case, the left-Jiand one of the 24

linear expressions included, in this fable by

one by
Tf-

\+i

v/2’
the right-hand

It will be unnecessary to write down specially the new ex-

pressions here.

With regard, now, to the second position of the co-ordinate

system relatively to our configuration, it is sufficient, in order to

have the substitution formulm belonging to it, to take^ account

—

in the formulae (22), (23), &c., just obtained—of the transforma-

tion of co-ordinates which leads from the first position to the

second. For such a transformation of co-ordinates, the original

^ will be replaced by—i .
-i, and of course simultaneously

^2 V 2 ^2

the original V by —^ . -f^ Let us observe, moreover, that
z

2 v2 ^ 2

"L z 1 — i ...^ = 1. We thus obtain on brief reflexion the rule

:

n/2 n/2

If we desire substitution formulco which correspond to the new

position of the system of co-ordinates, lue must, in the expressions

occurring on the left-hand side in (22), leave unaltered, and
1

replace by
;
on the other hand, in the expressions occur^

ring there on the right-hand side, we must replace z^ by L±^‘
x/2'*

and leave z^ unaltered.

With such entirely elementary operations I again omit to

explicitly note the expressions which occur.

* Namely, if we suppose the rotation through 90® round Of-axis proceed

in a positive sense.
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§ 6. The Icosahedral Group.

We have now to investigate the homogeneous substitutions

of the icosahedron. With this object we will assign to the

icosahedron such a position with regard to the system of co-

27r
ordinates that the rotation through which we previously

(§ 12 of the preceding chapter) denoted by takes place in a

positive sense round the f-axis, while at the same time the

cross-line, round which the revolution U {loco cito) takes place,

coincides with the 77-axis. Then we have at once, corresponding

to the op)e7'ations aS, Z7, the following suhstitiUions

:

(24)

= dbc%,
= ;

= =fc

which, taken together, generate the dihedral group belonging

to the vertical diagonal of the icosahedron.* By e here, as

always for the future, the fifth root of unity

:

(25)
2z7r

€ = e~6~

is to be understood.

Our convention respecting the position of the system of

co-ordinates admits of a twofold possibility with regard to the

revolution 'J\ which we have now still to consider.

The axis of T can move in the f^-plane either through the

first and third quadrants of the system of co-ordinates ff, or

through the second and fourth. We will agree, that the latter is

the case. If we understand by 7 the acute angle which the

said axis makes with Of, one of its ends will have the co-

ordinates :

^=-sin 7,77 = 0, f=cos 7,

and the parameters of the corresponding rotation become by

(12) (since we are concerned with a rotation through 180°):

a = =F sin 7, = 0, c = ± cos 7, = 0

;

* This is here related to a somewhat different system of co-ordinates to

that of formula (20).
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where, as always in these foriniilge, the upper and the lower

signs go together respectively.

The question now is how we calculate the angle y. For this

purpose I will return to the parameters of S (24) :

a' = // = 0, c'= dbsin Z, d' = ± cos ^ ;

5 5

and to the formula0 of comi)osition (17). By means of this

formula we lind for the parameter d" of the operation ST

:

d" — — aa — hi/— erf + dd'

— lb cos y
* sin

0

Now the operation ST (as a glance at the figure of the

icosahedron shows) has the period 3 ;
it must therefore be

identical with ± cos We thus obtain, if we further

consider that cos y must be positive

:

. TT 1
cosy, sin

or, if wo again introduce the root of unity e, and recall that

we must have

:

and, therefore, again assuming the positive sign,

sin y

:

c2--€=^

We now introduce these values into the expressions a, 6, c, d,

just given, and also refer to the formulse (IG). Then loe have,

finally, for the tivo homogeneous substitutions which correspond to

the rotation T

:

(26)
±(€2~c3)^1±(c-€%.

From (24), (2G), wo now construct at once the whole set of

icosahedral substitutions. Wo need only remember that we
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previously brought the icosahedral rotations into the following

table

:

S^U, S^TS-, Sf^TSvUy (/X, V = 0, 1, 2, 3, 4).

Covresipondmg to this we oltain for the 120 homogeneous icosa-

liedral substitutions

:

(27)

-1
i^'.= 22;

S>‘U: K= =Fc^^ ^
2 ,

Z
2
=

-1

: -

V5 ±€^*' (-(‘ --e4)c3M. £V ^2).

1 Vs zhe^*' (+(‘-^ -e^) r’'".. 2
j + (« -

S'^TS^'U: J
f Vs (+(‘^ — e-^) ,. Sj + (e -

’

1

x.
1 Vs dbe^'' (-(‘ . 2i+(€

2 - g
2^ ^ J.

I will further call attention to the simple rule by which
here (as also in the previous cases), the periodicity of the

individual rotation is determined by formula (15). We obtain,

in virtue of this formula, for the angle a of a rotation

cos
a _ (€ — €*')

2="^ 27B
’

and analogously for the angle of rotation of Si^TS^U

:

a — €^) (€*V+ 2»'— ^2M-+Sy\

TV?
We have, therefore, for the i^eriod 2, ^ fi+i;e= 0,

for Sf^TS^'U if Six-\-2v=0 (inod, 5).

We have for S^TS^ the inriod 3, if /x4-i;= ±.\,for
3/x+2i^= 1 i (^nfiod, 5).

In the 20 other cases and JS^^TSyU are respectively

of period 5. To this must be added, what is self-evident,

that all the Sf^U have the period 2; all the aSV, with the sole

exception of (identity), have the period 5.
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§ 7. Non-Homogeneous Substitutions—Consideration of

THE Extended Groups.

From the homogeneous substitutions we naturally descend

without calculation to the non-homogeneous substitutions. I

exhibit, however, the formulae in question in a tabular col-

lection, because, when the fixed value of the substitution-

determinant hitherto maintained is abolished, they admit of

a certain amount of condensation, and hence, in fact, become
very readily surveyed. We find for the non-hoynogeneotis

substitutions

:

(i.) For the cyclic group:

^ikir

/ = e^~.z,{k = 0, 1,. . .

(ii.) For the dihedron

:

2ikir

2ikT ^
(29) as before)

;

(iii.) For the tetrahedron and first assumption respecting

the position of the system of co-ordinates

:

Z = ±Z, ±-, ±l . ±l . —— , ± ±-—

,

Z Z—l 2+1 2— i Z+ t

(30a)

also, for the other assumption :

/oAu\ « I I

(1 + 0^+ \/2 ^ \/2 . z-(\-i)
(30b) 2 = ±2, ±-, ± —7= ——,

±———

i

Z — (1 — t) (lH"t')2+ is/

2

^/2 V2 . g-(l+t)

V2 . 2— (l + t)’ (1—

(iv.) For the octahedron with similar distinctions in the two

z—i' '

z+ i

J2.z-(l^i)

(1 + 1
)
2;+ ^/2

.j, (l~t)2+ ^/2 >/2.2~(1 + 0
' ^/2.2-(l+^y * (i-"i>+V2’

cases

:

(31a)
f •],

2 =
,

t'*

2

«+l ,k £-1
’ z—V ’ z+

1

and:

(31b) II (! + *>+ v2
V2.2-(l-t]
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k has here in each case to assume in succession the values

0, 1, 2, 3.

(v.) For the icosahedron :

(32)
— p — (« — «'*)«'* 2 4- (e® — €*)

“T~’
'

(£2-£3)£M.2+ (£ -t*y

_ . (£^-£V-g+ (£

-(£ -£V.2+(«^-«»y
2iir \

£ = e®; v, = 0, 1, 2, 3, 4/.

From these formulae wo now pass at once to those which

correspond to extended groups (as we expressed it in Chapter I.),

namely, if wo deduct the single groups of formulae (30a), the

ff-plano is throughout a plane of symmetry for the configura-

tion just considered. Now we can generate the extended

group by combining the reflexion on this very plane of sym-

metry with the rotations of the original group. This reflexion

is, however, given analytically by the formula

:

where z denotes the conjugate value of the imaginary quan-

tity z. Hence we shall obtain formidoe for the operations of the

extended group if ive place alongside of the formulce (28) to

(32) ((30a) alone excepted) the others in vjhieh z is replaced by z,

I conclude this paragraph with two short historical remarks.

Of the groups of substitutions (28) to (32) only two cases

come particularly into prominence in earlier literature (except

the cyclic groups, which, of course, occur everywhere), viz., the

dihedral group for n = 3 and the octahedral group (31a). The

first case appears in a form somewhat different to that of (29),

but only because a different system of co-ordinates is estab-

lished on the z-sphere, viz., that for which that great circle

which we have hitherto described as the equator coincides

with the meridian of real numbers, and the summits of the

dihedron have the arguments z = 0, 1, oo. We thus find the

formulae :

Jl ^ g~l
1— 1’ z

which in projective geometry connect the 6 corresponding

values of the double ratio and in the theory of elliptic func-
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tions (which is really the same thing) the 6 corresponding

values of (the square of Legendre’s modulus). The group

(31a) is found in several places in Abel’s works.* The object

is there to present the different values of k^, which result on

transforming a given elliptic integral of the first kind by a

linear substitution into Legendre’s normal form :

r ^
Abel remarks that these different values are represented in

terms of any one of them in the following manner

:

If we here extract the fourth root and replace „^k by z all

through, these are evidently exactly the expressions (31a).

§ 8. Simple Isomokphism in the Case of Homogeneous
Ghoups of Substitutions.

For a discussion of the groups of substitutions now obtained

from the point of view of the theory of groups, it will be

sufficient to refer here to the analogous inquiries in our first

chapter. In fact, our non-homogeneous groups of substitutions

are simply isomorphic with the groups of rotations there

considered, the homogeneous ones at least hemihedrically,

where let us expressly remark, that among the homogeneous

substitutions the two

:

and

always correspond to “identity.”

Moreover, we will concern ourselves with a question of an

allied nature, certainly, if not purely one belonging to the

theory of groups, a question which we have already pointed

out (§ 4 supra), and the answering of which will be of prime

importance to us in the sequel. We have found for a group

of N rotations in every case 2N homogeneous substitutions.

We ask if it be not possible to extract from among these 2N
substitutions N of them forming a group so that simple

* See, e.g ., Bd. i, p. 259 (new edition by Sylow and Lie).
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isomorphism with the group of rotations ensues, or if we
cannot at least attain that isomorphism, by imparting any
other value to the determinant, which we have hitherto taken

+ 1
,
of the individual substitutions?

We begin with the repetitions of a single rotation, with

the cyclic gronp}^, where, in order not to apparently limit the

investigation by the introduction of a canonical system of co-

ordinates, we will start from a perfectly arbitrary system of

27r
co-ordinates. We therefore take, say, a rotation through —

,

for which an arbitrary point f, 97 , f, on our sphere remains un-
moved. To the corresponding linear substitution (16):

z\ = {d+ ic)z^— (h — ta)z2y

;/o = (/>+ m)z^ -h(d— icjz^y

we have hitherto attached the parameters

:

sin ±r/ sin sin ^y d= ± cos
TC n 7t 71

We will now write instead of them, tdJdng the determinant of

the suhstitiUion equal to :

(34) sin = pr} sin - pC sin \yd^^p cos

Becurring then to the formulae of composition (17), we obtain

for the parameters of the repetition of our substitution

:

. , .
/j'TT

, , .
hie u t. • ^ u

ak = p^ . g sin —
,

= . r] sin — Ck = p^ . f sin
, dk = p^ cos—.

71 71 7lt 7fi

We require now—in order that simple isomoqehism with the

corresponding group of rotations may take place—that the

repetition of our substitution should be identity, and that,

therefore

:

«n=^^n = Cn = 0
,
d^^l.

It is clearly necessary for this that

:

- 1 .

We shall, therefore, then, and only then, attain to simple iso^

morphisoi between the substitutions and the group of rotatioTis

'ivheyi we introduce in (34) p as the n*^*' root of (
— 1 )• Hereby,

however, the value p^ of the determinant of the substitutions

is determined, or at least limited to a few possibilities only.

If n is odd, we can take p=—

*

1
,
and therefore the deter-

minant 5?= + 1 , If 71 is even, the value -f 1 of the determinant

P
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of the substitution is inevitable. In particular, if n= 2, we
must choose the determinant = — 1, and the magnitude

p=z ±i.

We now consider the dihedral group. We have for it, first

of all, the rotations (with aS''^= 1), which, according to what

has just been said, we must make correspond to substitutions

of determinant where We have further the

rotations of period 2. To effect simple isomor|3hism we

shall certainly ])rovide the substitution which corresponds to

T with the determinant (—1). Now we know that in the

compositions of two substitutions their determinants are

vmtlfiplied. Therefore we obtain for a substitution of

determinant — p‘^^ But this must itself again bo equal to

~1, because has the period 2. Thus we have for p the

simultaneous equations

:

p»=_l,p2^= + l,(j^= 0, 1, . . .
(«-l)).

These are evidently only reconcilable when n is odd (whence

p=z —1). Therefore it follows that, in the case of the dihedral

group^ the desired simple isomorphism can only exist for n
odd, never for n even.

We shall in the sequel lay special stress on the negative

part of this proposition, for we at once deduce from it an

analogous theorem for the groups of the tetrahedron, octa-

hedron, and icosahedron. In the case of the tetrahedron, octa-

hedron, and icosahedron, simple isomorphism between the group of

rotations and the group of homogeneous substitutions is impossible.

They all contain, namely, as sub-group at least one dihedral

group with n even (viz., a quadratic group), and herein, as we
have just seen, lies the impossibility alluded to.

§ 9. Invariant Forms belonging to a Group—The Set
OF Forms for the Cyclic and Dihedral Groups.

True to the general process of thought which we have

sketched in § 1 of this chapter, we now ask—after finding

the homogeneous group of substitutions which correspond to

the several groups of rotations—for all such forms F(z^, 2^ as

remain unaltered, save as to a factor, for these substitutions.

Such an invariant form (an expression which we shall here-
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after retain) dearly represents, when equated to zero, a system

of points on our sphere which remain unaltered for all rota-

tions of the group in question—a proposition which we can

reverse. Now such a system of points must necessarily

separate into mere groups of points of the kind which we

have described in § 10 of the preceding chapter as appertdin’-

iiig to the group. The invariant forms which we seek therefore

arise when any number of the forms which correspond to the

aforesaid groups of points are multiplied together.

Concerning the nature of the ground-forms thus presenting

themselves, we can a make certain more detailed state-

ments. If N is the number of rotations of a group, the groups

of points which appertain to them consist in general of N
separate points. The general ground-form will accordingly be

a form of the degree, and will contain besides—corre-

sponding to the singly infinite number of groups of points

mentioned before-- an essential (not merely factorial) para-

meter. But there occur among the general groups of points

those in particular which contain only a smaller number of

separate points. In accordance with this, sjKcial ground-forms,

of degree — will occur, which can only be considered as a

special case of the general ground-form when we raise them to

the power.

If we wish to push these general results any further, we must

separate here the case of the cyclic groups from the others.

In the case of the cyclic gro'ups there occur among the

general groups of points only two special ones, each consisting

of only one point, viz., one of the two poles. Accordingly in

their case there are two special ground-forms, and these linear

ones. Retaining the system of co-ordinates which was intro-

duced in § 4 in the treatment of the cyclic groups, these are

simply and themselves. But further, we can here very

easily construct the general ground-forms, and this by means

of a method of reasoning which we shall find exceedingly use-

ful in the following cases. To pass to the general ground-

forms we construct the n^^ powers of and z^, and convince

ourselves that, by the several substitutions (18), they acquire

the factor (
— 1)*. Whence we conclude that un-

derstanding by \ : Xg an arbitrary parameter, is also an
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invariant form in each case. Since its degree is equal to n

(equal to the number of rotations of the group), it is at the

same time a ground-form. It is manifestly^ without further

proofs the general ground-form. For we can so determine

Xj.'Xg f^iat + vanishes for an arbitrary point on the

sphere, and tlierefore just n'pn^sents tlie group of points

proceeding from it by means of the rotations of tlie cyclic

groups. Thus wo have given a general solution, for the case

of cyclic groups, of the (|uestions which first confronted us.

We can exjnu'ss the result ])y saying that /br the eyelic groups

(18) the most general invariant form is given hy

:

(35) JJ
i

where a, /I, denote any podtire integral numbers and

any parameters.

In the other cases the theory pn‘sents certain differences,

but only in so far as for them, among the general groups of

N separate points each, three grou])s of a smaller number of

points occur. For the multiplicities which are to be attributed

to these special cases, so far as we include them under the

general groups of points, we will again assume the nota-

tion i/j, which we used in § 9 of the preceding chapter.

N N N
The said groups of points tlien contain respectively —,

separate points, and produce accordingly o special ground-

forms respectively of the same degree. We con-

struct Ff'^, F,/\ Then it is shown that these powers all

assume the same constant factor for the homogeneous substitu-

tions in each case concerned. Therefore every Umar com-

bination :

is an invariant form, and, indeed, as its degree shows, a

ground-form.

But the general ground-form contains, as we have said,

only one essential parameter, while we here have two in

XiiXgiXg. We conclude that for the representation of all

ground-forms it suffices to take into consideration the linear

combinations :
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and that thvrefom an identity

:

(36) -f = 0,

must exist hetuxcn I\, I\.

Considering Jdways eliminated by means of tliis identity,

we Iiave finally, as the ex])ression of the most general invariant

form

:

(37) . I'Y . F^y
. JJ -t-V^D.

where the positive integral numbers a, fl, 7,
and the para-

meters are throughout arbitrary.

In the case of the diked ran, the whole theory here described

presents itself again in such a sim])lc form, in virtue of the

position of the system of co-ordinates established in § 4, that

we can write down the n^sult immediately. We have

:

N = 271, v^ — v^ — 2
,
V3 - n,

and find accordingly

:

(38)

= 0 represents the summits of the dihedron. F^ = 0 the inid-

edge points, F^ = 0 the jiair of poles. Between F„ F„
exists then in correspondence with (36) the identity

:

(39) Ft;^-F^^-F^^ = 0.

As regards the tetrahedron, octahalron, and icosahedron, the

establishment of the special ground-forms recpiires in their case

special considerations, to which we now turn.*

* The forms Fi, F.^, considered in the several cases together with the

relations subsisting between them, occur for the first time in Herr Schwarz’s

memoir ;
“ Ueber dicjenigen Fiille, in denen die Gaussische Reihc F(a, /8, 7, as)

eine algebraische Function ilires vierten Elementes ii»t,” Borchardt’s Journal,

Bd. 75 (1872). See, too, frequent contributions in the Ziiricher Vierteljahr-

schrift from 1871 onwards. The reason of my only cursorily citing this funda-

mental work is that its point of view in the treatment of forms F is, in the

first place, quite different from ours. Its starting-point is formed by certain

questions in the theory of the conforvuible repreaentatiorit on which we shall

enter more fully in the following chapter. On the other hand, Herr Schwarz

gives neither the groups of linear substitutions, nor the relation to the theory

of invariants which we shall now lay so much stress on.
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§ 10. Preparation for the Tetrahedral and
Octahedral Forms.

In the case of the tetrahedron and octahedron we have to

distinguish, in accordance with § 5, two positions of the

system of co-ordinates. Beginning with the first of these,

we find for the summits of the octahedron now the points

of intersection of the co-ordinate axes with the sphere) the

arguments

:

^ = 0 ,
00

, ± 1
, ±h

and therefore the octahedron is simply given by the following

egnation

:

(40) =

In a similar manner we determine the equations for the

two corresponding tetrahedra and the cube determined by its

8 summits. The 8 summits of the cube have as co-ordinates

;

We shall pick out the summits of one of the corresponding

tetrahedra, if we choose here, among the 8 possible combina-

tions of sign, those 4 for which the product is positive.

Substituting in the formulae (6), we obtain for the arguments

of the 4 summits of the tetrahedron

:

_ 1 q-t 1 — 1 + e —\—i
v^i+T' vJ+r

Whence we obtain (by multiplying out the linear factors) the

equation of the first tetrahedron in the form

:

(41) v'
— S . +

In the same way we find for the counter-tetrahedron

:

(42) - 2 7- 3 . z^h.^+ z^^ = 0,

and finally for the cube, on multiplying together the left sides

of (41) and (42):

(43) 4- 1 + z^ = 0.

I will denote in the sequel the left sides of (40), (41),

(42), (43), by ty IF, W. If we now rotate the system of
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co-ordinates, as we proposed at the end of § 5, tlirough an

angle of 45° round the f-axis, these forms are transformed into

others with only real co-efficients. I shall distinguish these

forms by accents, and put

:

(44)

f t' =Zi22(Zi<+V)'
4>' = 21^ 2^3
4^' = 2i^+2V3 . 2iV-«2S
(>r=zi8

« 2 _
/il <^2 ? 4

Equated to zero, these forms represent of course the octa-

hedron, tetrahedron, and counter-tetrahedron, as well as the

cube relatively to the new system of co-ordinates.

§ 11. The Set of Forms for the Tetrahedron.

In accordance with the explanations given in § 9, our whole

consideration of the tetrahedral forms may now be limited to

two points
;

first, to determine the constant factors to which

the ground-forms

:

r^ ^ 2 + 2f2^,

(45) = +
I t = hh{h^-h%

or the corresponding ones <P', W, t' (44), are subject for the

homogeneous substitutions of the tetrahedron
;

secondly, to

note the linear identity which connects or t’^,

with one another.

With regard to the first, we recall the generation of the

group of the tetrahedron as we established it in § 13 of the

preceding chapter, and have already used it in the present

chapter. For the substitutions of the quadratic group (21),

!P, t, evidently remain in general unaltered. On the other

hand, for those substitutions which correspond to the rotation

2iTr 4i7r

U of period 3, $ and F receive factors e^ and e 3
,
while

t remains invariant for these also. The consequence is that,

in addition to and W^, = TF also remains unaltered

throughout, while ^ and F themselves are only transformed

into themselves by the substitutions of the quadratic group.

As regards this latter circumstance, we perceive in it a confir-

mafinn nf a -nriTieinlft which we can establish a mimn. This
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asserts that Uiose suhstitidio'tis of a homofpmcom (froitp,

leave altogether unaltered a corresponding invariant form, must"

form a self-conjugate sub-group xoithin the main group of substi-

tutions. These remarks, of course, just apply to the forms

Vr', i', W\
Having confirmed by these remarks the existence of the

supposed identity bc‘tweeii &c.,* we sliall be able to

compute it by only taking into consideration the first terms in

the expressions of $2
,

t^. In this way we find without

trouble :

(46a) 12^-3 . +
or :

(46b) 1 2 ^3 . ^ Q

In connection with the results here obtained two remarks

may be made which are both related to the invariant theory of

binary forms, and of which the one may express the signifi-

cance which the said theory will often have for us in the

sequel, while the other is designed to marshal the results

obtained by us in the case of the tetrahedron relatively to the

otherwise well-known products of the invariant theory.

Suppose that, of the forms (45), we have only so far com-

puted one, viz.,
;
then tlie theory of invariants supplit's us

with the means of deriving frotn it other tetrahedral forms by

mere processes of differentiation. We have only to establish

any covariants of In fact, if $ is transformed into itself,

save as to a factor, by any homogeneous linear substitutions,

so also is every covariant
;

this is an immediate deduction

from the definition of covariant forms. Now $ is a binary

form of the 4th order, and the theory of invariants shows
“f*

that such a form only possesses two independent covariants

—the Hessian form of and the functional determinant of

this form with The former is of the 4th, the latter of the

6th degree; moreover, we may convince ourselves that the

former is not identical with We, therefore, conclude at

* Since P remain uniformly unaltered by the tetrahedral substitu-

tions (22).

t Clebsch, “Theorie der binaren algebraischen Formen ” (Leipzig,

1872), p. 134, &c., or the other text-books of the theory of invariants, e.g.,

Salmon-Fiedler, “Algebra der linearen Transformationen ** (Leipzig, 2nd
edition, 1877), Fak de Bruno-Walter, “ Einleitung in die Theorie der biniiren

Formen” (Leipzig, 1881), Ac.
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once that the Hesdan of equated to zero, represents the

counterdetrahedron, and similarly that the functional determi’-

nant, equated to zero, 'represents the correspondiny octahedral

form. For both these forms, equated to zero, must represent

such groups of points as remain unaltered by the tetrahedral

rotations, and no other groups of only 4 or only G connected

points can exist besides those just mentioned, or at least do not

come under consideral ion (inasmuch as the 4 summits of t he

original tetrahedron, which likewise form such a group, are

already given by ^ = 0). We should therefore he able to calculate

also amongst the forms (45) both IF and t by constructing the

Hessian form of and then, from this and tlis functional

determinant. In fact, we get by calculating out directly :

S2cl>

8^

8.-:,

S’P

8z, 8-^

= 48

1 = 32 if.

The tlieory of invariants possesses, as we see, in virtue of

these remarks, the character of a method of computation. As
regards our further elaboration by the theory of binary in-

variants, let us recur to the general theory of biquadratic

forms, let

:

be such a form. Then we have in the first place, as already

explained, two covariants, which we will now denote by H and

T, the numerical factors being properly determined:

8F SF

^=-L. II
&Zi Sz.^

144 S^F S"-F

8z2*

' 8 m m
8zi 8z2

We have, further, two invariants:

^1 ^2

" ^2 ~ ^0^4— "h Vz “ ^2 ^3
a>2 ^4

(49)
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(where I have applied on the left-hand side that notation to

which I shall hereafter have anyhow to return in connection

with Weierstrass’s theory of elliptic functions). We have,

finally, as the single relation between these forms, the

following

:

(50) UP~ + 2^ = 0.

Let us now put our $ in the place of F; then we have in

the first place

:

G^his means, if we adopt the geometrical mode of expression

which, c.g,, is explained by Clebsch, 1. c. p. 171

;

2'he form $ equated to zero represents an eqnianliarmonic

group ofpoints,^

We find, further, for our $

:

lienee the identity (4Ga) is included in the general relation

(50) as a particular case, as was to be expected. We must,

therefore, say that our geometrical reflexions on the group-

theory have led us in the case of the tetrahedral forms not so

much to new algebraical results, as to a new way to results

otherwise known.

§ 12. The Set of Forms for the Octahedron.

Turning now to the octahedral forms, we already know, of

the 3 special ground-forms appertaining to them, the two :

(51a)

and:

(51b)
[t^^^z^zfzf4j_.4)^

We easily verify that, setting aside a numerical factor

which occurs, W can also be computed as the Hessian of t.

We obtain a new octahedral form by now constructing the

We arrive, of course, at the same result if we in general interpret geo-

metrically on the sphere the double ratio of 4 complex values 2=a5 + iy, in the

way that Herr Wedekind has done in his inaugural dissertation (Erlangen,

1874), and in his note on the subject in the Mathematische Annalen (Bd. ix,

1876).
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functional determinant of t and W. We thus have, disregard-

ing a factor

:

(52)
33^1V- 33.^1V + 01*

lx = + 33^1V- 332^%® - ^2^^-

We easily prove that this ^ is the third special ground-form

of the octahedron, i,e.

,

when equated to zero it represents the

12 mid-edge points of the octahedron. In fact, x= 0 must
represent a group of only 12 points connected by means of the

octahedral rotations, and since ^ is different from and the

group of 6 octahedral points counted twice does not therefore

come under consideration, there is, in fact, no other possible

explanation.

We have just seen that t and W remain entirely unaltered

by the homogeneous tetrahedral substitutions. The same is

consequently true of For being a covariant, can only

alter by a power of the substitution-determinant at the most,

if its ground-form is unaltered
;
but this determinant is in

our case equal to 1. Now in § 5 we generated the homo-

geneous octahedral substitutions by entertaining, in addition

to the tetrahedral substitutions mentioned, a single substi-

tution (23) which corresponded to a rotation V of period 4.

We determine by direct calculation that t changes its sign

for this substitution (and therefore generally for all octahedral

substitutions which are not at the same time tetrahedral

substitutions). Accordingly W as the Hessian, and since we
are again concerned with a substitution of determinant 1,

remains generally unaltered, while x changes its sign alter-

nately just like t, so that the product x^ remains unaltered.

Thus in any case, are in general not altered by our

homogeneous octahedral substitutions, and there exists, there-

fore, between them the supposed linear relation. Again,

taking into consideration only certain terms in the explicit

expressions which result for these forms from (51) and (52),

we get for them

:

(53)
108^^- =

a relation which holds also for W*y and

The form t has been long known in the invariant theory of

binary forms, inasmuch as it presented itself as the covariant
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of the Gth degree of tlie binary form of ilie 4th order, when
the latter was assumed to be of the canonical form:

Similarly, the synthetic geometers have on many occasions

closely investigated the system of points / = 0, in their

language: the aggregate of 3 mutually liarmonic pairs of

points. Clebsclt, too, in his theory of binary algebraic forms,

has considered the form t as a special case of general binary

forms of tlie Gth order.* Finally, as regards the relation (53),

this, with those analogous to it, are included under a general

formula of the theory of invariants, by virtue of which the

square of a functional determinant of two covariants is ex-

pressed by integral functions of forms of a lower degree.

§ 13. The Set of Forms for the Icosahedron.

To establish the form of the 12th degree, which, equat ed to

zero, represents the 12 sumuiits of the icosahedron, we first

calculate the arguments of the several sumiuits, supported by

our former develoimients (§ G). One of the summits has the

argument <:= 0; introducing this into the GO non-homogcneous

icosahedral substitutions (32), we obtain for the 12 summits:

(54) ^ - 0, oo, + €3), (v = 0, 1 , 2, 3, 4).

We can therefore take the required form / equal to the follow-

ing product

:

V2 JJ[
• ^

2) • JJf («1
-

V V

or:

+ • ^
2®) + . ^2^) I

or finally

:

(55) /= + 1 1^1V* “

We will now again calculate from the / so obtained, dis-

carding the proper numerical factor, the Hessian form, and

from this and / calculate the functional determinant. We
thus obtain the two forms

:

Cf. p. 447, &c. Consult, too, Brioschi, “ Sulla equazione del ottaedro,”

Transunti della Accademia dei N. Lined 3, iii. (1879), or Cayley, “Note on

the Oktahedron Function,” Quarterly Journal of Mathematics, t. xvi, 1879.



INTRODUCTION OF x-\-iy 6i

(56) 11=
J2/-

^2

(57)

- (Xj^o+ ;;,20) + 228(ai’-V- - 494«ii%’'>,

S/

8;^j^ 8.:'o

8^ m
8.,

r= -i-
20

= -
;:i%25)

_ io005(::,%,io 4

and I assert with regard to them that H=^ rqfrenoits the 20

summits of the pcntaijon-dodccahedrou^ 7^=0 the 30 mid~ed(je

points {the ends of the ]5 cross-lines).

In- order to prove tliis somewhat more completely than was

done in the analogous cases of the tetrahedron and octahedron,

let ns remark, first, that H and T as covariants of / certainly

represent 20 and 30 points respectively on the sphere, sncli

that their totality remains unaltered for the 60 icosahedral

siibstilutioiis, J3ut now the points on the c-sphere arrange

themselves in general by virtue of these rotations into sets

of 60, and the number of points thus grouped together is

lowered then, and only then, and this to 12, 20, 30 respec-

tively, when we have to do with tht‘. summits of icosahedron,

the pentagon-dodecahedron, and the mid-edge points. An
aggregate of ])oints whicli remains unaltered for the 60

icosahedral substitutions must be a combination of such in-

dividual groups of points. The number of points which it

contains necessarily admits of being put into the form :

a.60 + /3. 12-1-7.204-5.30,

where a, P, 7, 8
,
are integers, and P, 7, 8

,
give the multi-

plicities with which the summits of the icosahedron, the

pentagon-dodecahedron, and the mid-edge points contribute

to the aggregate of points.

Now if, as in the case of //=0, this number is equal to

20, or if, as in the case of T—0, it is equal to 30, there is in

either case only one possible determination of a, p, 7, 8, viz.,

in the first case a = ^= 8 = 0, 7=1, and in the second case

tt= /3= 7=0, 8=1. But this is what we asserted regarding

the meaning of Af= 0, T= 0,
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We now investigate the behaviour of /, H, towards the

homogeneous icosahedral substitutions with reference to the

factors that may occur.

Considering only the yeiierating substitutions (24), (26), we
determine after a short calculation that f remains unaltered

for all of them. The same, therefore, holds good for H and T»

For we have defined H and T as covariants of /, and the

determinant of each substitution (27) is equal to unity. The
behaviour of /, //, T, in this connection is thus as simple as

possible. There exists, therefore, certainly, as was supposed

above, a linear identity between /®, 1'^, Again, recurring

only to the initial terms of the explicit formulas (55), (56),

(57

)

, we find for this identity:

(58) 4. 1728/5.

We have thus found results which are quite analogous to

those developed in the case of the tetrahedron and octahedron.

If we are to demonstrate liero also relations to the general

theory of the invariants of binary forms, we cannot at any

rate appeal to older works. For the knowledge of the forms

/, H, was, in fact, first obtained by the consideration of the

regular solids and the circumscribed (x | ^
2
/)-sphere. I first

investigated on this basis the principal invariantive properties

of the form / in Bd. 9 of the Annalen (1. c.). But there is a

series of later publications on the theory of invariants.

These are in connection with the definition, in the theory

of invariants, of the form f, and of the other forms respec-

tively, which we are considering. In this respect I had myself

already announced in Bd. 9 of the Annalen the theorem that

f, like the earlier forms $ and t, is characterised by the

identical evanescence of the 4th transvectant (/, /)^. This

theorem Herr Wedekind had expanded in his “ Habilitations-

schrift,” by showing that, apart from trivial exceptions, in

general there is no other binary form whose 4th transvec-

tant with respect to itself vanishes identically except t, and

f* Herr Fuchs has brought forward another property, ana-

Studien im binaren Werthgebiet,” Carlsruhe, 1876. See, too, Brioschi,

Sopra una classe di forme binarie,” Annali di Matem., 2, viii, 1877. Latterly

Brioschi has also considered such forms of the 8th order as are identical

save as to a factor with their 4th transvectant. See Coraptes Rendus, t. 96

(1883).
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logons to this, in his search for these forms, viz., that all

covariants of these forms which are of a lower degree than the

forms themselves, or are powers offorms of a lower degree, nmst

vanish identically, Herr Gordan then showed f that the pro-

perty which underlies this is, in fact, just sufficient to charac-

terise the form $, t, f, I mention, finally, the latest work of

M, Halphen,% He starts, generally speaking, from the neces-

sity for identities of 3 terms :

and shows that these cannot occur otherwise than in the cases

which we have investigated. We can thus even ivgard our

forms as defined by these identities. These developments of

M, Halphen are, moreover, closely related to the others which

we shall introduce in the fifth chapter of the present, part,

when our business is to establish generally all finite groups of

binary homogeneous substitutions.

§ 14. The Fundamental Rational Functions.

Having now spent sufficient time over the invariant forms

which belong to the homogeneous substitution groups, it is

easy to take the final step and construct such rational func-

tions of 2:= ^ as remain in general unaltered by the non-

homogeneous substitutions of § 7. In fact, we shall only have

to establish proper quotients of our invariant forms of null

dimensions in and z,j,. We asserted in § 1 that in all cases

one such quotient Z could be constructed, which, ecjiiated to a

constant, uniquely represents in each case the different groups

of points on the sphere such as we are considering. This is

clearly nothing less than saying that there exists a rational

function of the kind required which is of degree N, under-

standing by N the number of the non-homogeneous sub-

* See the Gottinger Nachtrichten of December 1875, as also the memoirs

in Borchardt’s Journal, Bd. 81, 86 (1876-78). The “ Primformen,” which

Herr Fuchs there considers, are just what we have called in the text “ ground-

forms.”

t Math. Ann., Bd. xii (1877) ; Bin. Formen mit vcrsch. Covarianten.”

J ‘‘Mem. presentds par divers savants d I’Acaddmie,” &c., t. 28 (1883):

'‘Memoire sur la reduction des equations diff, lin. aux formes int^grables”

(Prize-essay of the Paris Academy, 1880).
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stitutions in question. Before we actually establish these

fundamental rational fnnciions, and thus provide the shortest

proof of their existence, it will be useful to make inquiries as

to their position among the other rational functions which

remain unaltered.

I say first that every auch rational function of z is a rational

function of Z. Tn fact, if R(z) be such a function, ]{{z) will

assume the same value for all j)oints on the sphere which pro-

ceed from it by means of the N rotations of the group in

question, but the N points so connected are, by hypothesis,

characterised by one value of Z. The functions Z and jK,

which, through the intervtmtion of z, are always algebraical

functions of one another, are therefore so related that to every

value of Z only one value of II corresponds, ?>., 7^ is a rational

function of Z^ qxA, That conversely every rational function

of ^ is a function scarcely needs mentioning.

I say further, that^ hy the iiroperty aftrihiUed to it, Z is fully

determined save as to linear transforniaHons, viz., let Z' be a

second rational function of z, which, like Z, has the property of

representing, when equated to a constant, only one group of

conneett'd points. We conclude, just as before, that Z' de-

pends rationally on Z, but that also Z depends rationally on

Z'. ^J'herefore Z' is a linear function of Z: Z' It is
yZ+ o

again manifest that we should be able conversely to use every

Z' introduced in this way as our fundamental rational function

just as well as the original Z.

On the last remark is based the following : that we can

subject our fundamental rafioiad function Z to three more imte-

pendent coyiditions, to make it fully determinate. First with

regard to tlie cyclic groups, we sim])ly put

;

(
59)

where Z therefore vanishes for one pole of the cyclic group,

and becomes infinite for the other, and takes along the equator

the absolute measurement unity. In the other cases, we have

always, as we know, to distinguish three special grou])s of

points, which, with the multiplicities v.^ respectively, are

contained within the general groups of points appertaining
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thereto. Following a method frequently employed, we now so

regulate our Z that it assumes for these three groups of points

the values 1, 0, oo
,
respectively. ' Then Z will take the form

and ^—1 the analogous form
,
where by

F^ are to be understood what we have previously called the

ground-forms. At the same time, c and c' must be of such a

nature that the equation

:

c
F^^i

coincides with tlio oft-mentioned identity existing between

F^, F^y F^, which fully determines c and c\

Turning now to the task of giving explicitly in every case

the function Z thus defined, I make use of a notation which

uniformly connects the two expressions of Z and Z—1, viz., I

put Z: Z--! : 1 proportioned to:

cF/^ : : F^-n,

We obtain in thisform the following table, to which we shall often

recur

:

(1.) Dihedron:

(60) Z : if- 1 : 1 = (f^)'
-

;

(2.) Tetrahedron:

(61a) Z :Z- \ 1=^» : -12^-3 ,

.^2 .cl>3^

or

(61b) Z-.Z-\-. : -12 . :
4>'3,

according as we assume the first or second position of the

system of co-ordinates.

(3.) Octahedron, with the same distinction:

(62a) Z : lOSt\

or

(62b) ^ 1 : 1 « : X'" : 108^'^

;

(4.) Icosahedron

:

(63) Z.Z-\ -. 1 = ^^ : -T^ : 1728/.
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For the Rymbols here applied, consult throughout the principal

formulae of paragraplis 11, 12, and 1 3.

§ 15. Kemajiks on the Extended Grouj\s.

Finally, we return to our extended groups (§7) once more.

Wo want to know how our rational fundamental functions now
obtained behave towards them. From the analytical side the

extended groups 1. c. arose from a combination of the operation

^ with the non-liomogeneoiis groups of substitutions, where,

so far as the tetrahedron was concerned, we only supposed the

second position of the co-ordinate system to be employed. But

now, maintaining the same supposition, all our ground-forms

have real coefficients, and Z will be derived from these ground-

forms, in virtue of the preceding formula), in every case by the

help of real coefficients. The matter therefore simply comes to

this : that for all those operations of the extended grmups which

are not already contained in the corresponding non-homogeneous

groups of sfubditutions, Z in each case passes over to its conjugate

imaginary value.

Combining this result with the propositions which we de-

duced in § 11 of the preceding chapter, we obtain one final

remarkable result. It is this: Z assumes real values for all

those points for the z-sphere which lie in the planes of symmetry

of the configuration in gucstioii, ami only for such points. The
points of the said planes of symmetry are therefore in each

case characterised by the reality of the corresponding Z,

Looking back, we have in the second chapter thus ended

arrived at this point : we have connected the geometrical

results of the group-theory occurring in the first chapter with

a definite region of recent mathematic, namely, with the algebra

of linear mbstitutions and the corresponding theory of invari^

ants. Just in the same way, the following two chapters are

destined to effect the connection with the two other modern

theories. These are Riemanris theory offumtions and Galois's

theory of algebraical equations.
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CHAPTER III

STATEMENT AND DISCUSSION OF THE FUNDAMENTAL
PROJILEM, ACCORDING TO THE THEORY OF
FUNCTIONS

§ 1. Definition of the Fundamental Piioblem.

The investigations of the preceding chax)ter have led us, in

the formulae (59)—(63) of the last paragrax)h but one, to the

knowledge of certain rational functions Z of which remain

unaltered for the groups of non-hoinogeneous substitutions in

each case considered, and by means of which all other rational

functions of 2:, which remain unaltered, are expressed rationally.

To this result wo add the statement of a relation which we
denote as the equation appertaining to the group in each case.

Wc suppose, namely, that the numerical value of Z is arhitrarily

given, and seek to calculate from it the corresponding z as the

unknown

;

or, to express it differently : we no longer consider Z
as a function of z, hut z as a function of Z, The equation which

thus corresponds to the cyclic group is, according to formula

(59), 1. c., none other than the binomial equation

:

The other equations correspond in just the same way to the

formulae (60— 63). I will collect them here briefly in the form

:

(2)

which we used incidentally in the preceding chapter. Here
F^, F^, together with denote those three principal forms of

which all other invariant forms are compounded as integi*al

functions, and 1/3 are in each case taken from the table which
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was provided in § 9 of the preceding chapter, and which I

reproduce here to facilitate reference

:

*^2 *'3 N

Dihedron . . . 2 2 n 2n

Tetrahedron . . 2 ^ 3 3 12

Octahedron . 2 3 4 24

Icosahedron . 2 3

i

5 60

I have here added a last column, headed by N, which marks

the degree of the equation in each case under consideration.*

But with the equations (1), (2), only a part of our earlier

considerations is inverted
;
we obtain a second mode of pre-

senting the problem by recurring to the several invariant forms

themselves. These forms remain unaltered by the homogene-

ous substitutions of determinant 1 in general, save as to a

factor. It is not difficult, however, to select from them those

for whicli this factor is equal to 1, and which we can call the

absolute invariants. The sequel shows that these absolute in-

variants can be composed in every case as integral functions of

three of them
;
I have noted these three forms in the following

table, together with the identities subsisting between them in

each case

:

I. Cyclic groui^s,

f Forms : ^
2
^”

>

I Identity

;

II. Dihedral groups.

In the case of the dihedron we had

:

y niy n y n n

, X^2 2 >

and the relation

:

I shall also occasionally denote the degree of (1) by JV in the following

pages.
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If we now seek the absolute invariants, we obtain for n even

:

(5a)
/Forms: F,F,F,;

lldentity
:
{F^F^F^f^F^^ . F^^ .

and for n odd

:

(5b)
fForms : F^\ F^^F^, F^F^

;

lldentity: {F,F,f , F,^^{F^^F,) , {F,^F,^ F^+i).

III. Tetrahedral group

:

*

|Forma : F^ = t, F,,F,^ = W, F.^^ = ;

lldentity :
- 12 . ^2).

IV. Octahedral group

:

/Forms : F., = IF, F^^ = t\ F,F, = ;

lldentity
: {xtf = W'^- 1 08/5^).

V. Icosaliedral group

:

/Forms : F^ ^ T, F., = //, F^ ^f;
lldentity : +W - 1728/^ - 0.

We now supj)Ose, in a particular case, that the numerical

value of the three forms included in the table, in correspondence

with the identity subsisting between them, is given, and we
seek to calculate from this the values of the two variaUes z^*

Thus we have what we will call the form-problem. The

number of the systems of solution of a form-problem is always

2N, where by N is to be understood the degree of the corre-

sponding equation. All these systems of solution proceed in

this case, in just the same way, from any one of them in virtue

of the 2N homogeneous substitutions, as the N solutions of

each equation manifestly do with respect to the N non-homo-

geneous substitutions.

§ 2. Reduction of the Foum-Problem.

As regards the solution of the form-problem, we can always

accomplish it by means of the corresponding equation and an

accessory square root. Take, for instance, the cyclic groups.

We then calculate first from the forms (4) the right side of (1):

In the case of the tetrahedron and octahedron, I now use, contrary to

what I have hitherto done, non-accented letters.
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then solve (1), whence we find —= 2;, and finally obtain z^y

themselves by introducing this value of ^ into the given form

of the second degree z^^ (which we shall now call JT), whence

:

(
9) = % . Z.y.

In the case of the other groiii^s, the matter takes a form

perfectly analogous. For not only does the particular Z (2) in

these cases also admit of being rationally composed of the

forms (5)—(8), but we can also always construct rationally

from these forms an expression which is of the second degree

in z^y z,^. I choose as such, in all the cases

:

(10)

If we have then determined, by means of (2), the quotients

~ = we find, by comparison with (10):

(
11 ) V X (7, i)

’

where X {z^y z.^ denotes the magnitude (10) previously given,

and X (Zy 1) a definite rational function of 2; ;

F, (Zy\).F^{,y 1
)'

~
1 )

We have thus at the same time the means of simplifying

the previous statement of our form-problem, of reducing it, as

we will say.* By means of (9) and (11), z^y depend only on

X and Zy which, in their turn, are rational functions of the

forms (4)—(8). We now introduce these values of z^y z^ into

the forms (4)—(8). Thus these forms will be rational in X^

since they are all of even degree. But at the same time they will

he also rational in Z. For they now represent rational function

of Zy such as do not alter for the N corresponding non-homo-

That such a reduction was possible was pointed out to me incidentally

by Ilcrr NUheVy who derived it in a totally different manner from his general

researches on the conformable representation of surfaces.
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geneous substitutions. We shall therefore in the sequel, when
speaking of the form-problems, not suppose, say, the forms

(4)—(8) to be given [where wo had always to pay regard to

the identities subsisting between them], hut rather the ex/pres-

sions Z and X primarily, and then consider as functions

of these two magnitudes.

I reproduce here explicitly the rational functions of Z and X,

to which the forms (4)—(8) are equal. We verify these easily

by reflecting, on the one hand, how Z and X are composed of

the forms (4)—(8), and, on the other hand, taking account of

the identities subsisting between these forms. I find

;

I. For the cyclic groups

:

(12) z,z, = X,z^^^Z.X =

II. For the dihedron

:

for n even

:

(13a)

!LL?

^8 ^ > A »

lh-\~ 2

1 2 J i

and, for n odd :

(13b)

?i-hl~2“

^ ^ n-1

z 2

III. For the tetrahedron

:

Tkz— ’ 432Z~
’

P3__^2"
5184V::“3.Z

( 14)
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IV. For tiu octahedron .

(16) /’a
=108. J:‘.(Z-1)-^ X^.(Z-\Y_ _1U8

,

J\i?’
8
= 1082 .

. {Z-\f
Z-*

V. For the icosahedron

:

(16)

§ 3. Plan of the Following Investigations.

Wo have now to discuss the fundamental problems, which

we have thus far reached, under a double aspect, viz., in the

sense of the theory of functions, and algebraically. Postponing

the latter kind of investigations to the following chapter, let

us turn at once to the function-theory considerations.

We have z, the unknown in the particular equation^ as a

function of Z alone, while the 2^2 corresponding form-

problem depends also on X. But the mode of dependence by
formulas (9) and (11) is so extremely simple that we need delay

no longer over it. We will, therefore, only discuss z^ and z,^ so

far as they are functions of Z,

Such an investigation divides itself naturally into two parts.

We have first to obtain a yeneral survnj of the different branches

of our functions, and then to suggest the means of computing

the particular branch of the function by a convergent process

(for example, by a series of powers). We attain the former

very simply, in our case, by the method of conformable repre-

sentation (§§ 4, 5). We learn hereby, at the same time, the

fc/mii of the series which come under consideration for the

different branches of our functions (§ 5). The coefficients of

the expansions will then be given by proving that z satisflcSy in

relation to Z, a simple differential equation of the third oi^der, and

consequjcntly the roots Zg p(^'^cbll^l form’-problem appear as

solutions of a homogeneous linear differential equation of the

second order, with rational coefficients (§§ 6-9). Finally, we
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prove in § 10 that, by reason of the last-mentioned differential

equation, 2;^, are particular cases of Riemann's P-function,

whereupon oiir investigations are seen to join a well-defined

and much-explored region of modern analysis.

As to the results which we obtain in this way, they are, in

their main features, all contained already in the above-men-

tioned work of Herr Schivarz ;

*

except that in Herr Schwarz’s

article the order of the matter is just the reverse of that fol-

lowed by us here. Starting from the differential equation of

the hypergeometric series, Herr Schwarz first constructs the

differential equation of the third order, on which the quotient

z of two particular solutions Zp depends. He then investi-

gates the conformable representation, which z effects, of the

two lialf-planes of the independent variable Z, and proceeds

finally, by means of the condition that z is to be an ahjebmiral

function of Z, to the z-functions considiTed by us and the fun-

damental equations which define them.f We, on the contrary,

begin with these equations, construct from them the conform-

able representation, and then deduce the existence of the diffe-

rential equations of the third order, which z satisfies, and,

finally, pass from this to the differential equation of the second

order of the P-fuiiction, or, wliat is essentially the same, of the

hypergeometric series. In this connection it may be here ex-

plained that, in taking tliis last step, we borrow an idea which

Herr Fuchs has introduced in his memoirs mentioned above, J

inasmuch as we represent X (2^, z,^ (a form, therefore, depen-

dent on z^, z^) directly by means of Z.

I should, of course, have been able to collect the developments

here described much more briefly had I desired to presuppose

special knowledge with regard to Riemann’s P-function, or even

merely to make use of the general foundations of the modern

theory of linear differential equations with rational coefficients,

as developed by Herr Fuchs § in the 66th volume of Borchardt’s

* “ Ueber diejenigen Falle, in welchen die Gaussischc hypergeometrische

Reihe einc algebraiscbe Function ihres vierten Bleraentes darstellt.” Bor-

ohardt’s Journal, Bd. 75, pp. 292-335 (1872).

t I summarise in the text only such of the results obtained by Herr

Schwarz as are in immediate relation with our own exposition.

t See the reference on p. 63.

§ “Zur theorie der linearen Differentialgleichung mit veranderlichen Co-

efficienten ” (1865).
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Journal. This sacrifice being made, my exposition has the ad-

vantage of leading, by a relatively short route, to a portion

of the researches just mentioned. I should like to refer here

in this relation to § 3 of the fifth chapter following, where, in

connection with the development now given, the most general

linear differential equations of the second order with rational

coefficients, and which have entirely algebraical integrals, are

directly determined.

§ 4. On the Conformable Representation by Means
OF the Function z {Z).

Turning now to the conformable representation which is

furnished by z (Z)^ we denote as before the complex values

of z— X'^iy on the sphere, while we interpret Z=^X+iT on a

plane.* We construct in the plane Z the axis of real numbers,

and divide this into a positive and negative half-plane. We
mark in addition, when we have to do with the binomial

equations ( 1 ), the two points ^= 0 ,
oo, in the other cases the

three points Z—1, 0
,

oo.

A glance at the equations (1), (2), and again at the more

complete formulae (59)—(63) of the preceding chapter, teaches

us that, in the case of the binomial equations, the n function

branches coming under consideration for ^=0 and ir= oo all

congregate in cycle, while, in the other cases, for Z^ 1
,

of

the N existing branches are connected cyclically
;
for Z= 0, ;

and for oo, 1/3 , Now I say that the function z {Z) furnishes

no other branchings than those given here. In general, viz., when

-^'is given as a rational function of z=^iii the form:
^2

i' ihy ^2
)’

[where <]}, yfr, are to be integral homogeneous functions of the

accompanying argument, of degree W], we find those values

of z, and therefore of Z, for which branchings take place, by

Whoever is not thoroughly familiar with the theory of the conformable

representation will consult with advantage Herr Holzmtiller’s recently pub-

lished work, Einfahrung in die Theorie der isogonalen Verwandtschaft und
der conformen Abbildungen,” &c. (Leipzig, 1882).
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equating to zero the functional determinant of the {2N—2)^^'

degree

:

8^
Sz^ Sz2 Szi Sz^

If this vanishes /x-times at a position z = Zfy, /x t-1 branches

of the function z for Z=^Zq are connected cyclically in corre-

spondence therewith.* If we compute this functional deter-

minant in any one of our cases (1), (2), we always return to the

branching points, which we already know. For in the case of

the binomial equations we obtain simply

:

and in the case of the other equations, recalling that is always

= 2, and is the functional determinant of and F^

:

where the different roots of F^=0 all give Z=l, those of F^^ 0,

Z= 0, and finally those of ^^3= 0, Z== co.f

The data so attained are already sufficient to characterise

fully the nature of the conformable representation which we
sought. If we describe as an ?i-gon every figure situated on

the sphere, and furnished with the necessary number of sum-

mits, and otherwise bounded by continuously curved lines, and

observe that Z is rational in z, and that therefore to every Z
belong iV' values of z, while to every z belongs only one value of

Z, we have at once

:

In virtue of the binomial equation (1), the two half-planes Z
will be alternately represented on 2N lunes of the z-sphere which

meet at the poles of the z-sphere (i.e., the points z^z^^O) with

* The rule here formulated diflers from that given in the text-books in the

use of the homogeneous variables Zj, This has the advantage of embracing

in one form of expression the finite and infinite values of a, as the geometrical

interpretation of z on the sphere and the modern conception generally of the

infinite requires.

t This explicit calculation of the functional determinant was not really

needed for the establishment of our result ; it would have been sufficient to have

remarked that the total number of the branching points for Z=0, oo, and for

Z= 0, 00
,
respectively (with their proper multiplicities taken into account)

is identical with the degree (2iV-2) of the functional determinant. [We
must here attribute (j'- 1) roots of the functional determinant in each case to

V branches associated in cycle.]
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angles and envelope the z-sphere completely, but novihere

multiply.

Just in the same way in the cases (2), the half-planes Z will be

represented alternately on 2N triangles of the z-sphcre, which, with

angles equal extend to one point of i\ = 0, one point of

and one 'point of =
We now observe that all roots of (1) or (2) are successively

derived from any one of themselves, in each case, by N linear

substitutions to which correspond rotations of the 2;-sphere

round the centre. We thus conclude immediately that:

The N lunes or triangles which in an individual case corre-

spoml to the positive half-iAane Z, as also the N lunes or triangles

which correspond to the negative half-plane Z, are resipeciively

congruent with one another.

Finally, we recall the theorem which we deduced in the con-

cluding paragraph of the preceding chapter from the existence

of the extended group. We there showed that Z only assumes

real values along those great circles of the 2;-sphere which are

traced out by the planes of symmetry of the several configura-

tions. Now the real values of Z separate in the ^-plane the

two half-pianos. Hence we have finally

:

The boundary lines of the lunes and triangles are none other

than the circles of symmetry before mentioned, and our lunes and
triangles arc therefore identical with those figures which we have

described in^ 11 of the first chapter as fundamental domains of

the extended group,

I beg the reader to make himself quite familiar with the

formal relations liere described
;
this is not the place to discuss

them more minutely.* The representation which corresponds

to the binomial equations has of course been much investigated

elsewhere, only that the 2;-sphere has been replaced throughout

by the plane to which we must suppose our sphere related by

means of stereographic projection.^

* As regards the icosahcdral equation in particular, a glance at the figure

gives the elegant theorem : that this equation, for a real value of Z, possesses

always four, hut only four, real roots.

t In his “ Vorlesungen iiber mathematische physik ” (Leipzig, 1876), Herr

Kirchoff describes those plane figures which correspond to our lunes as

Sicheln.
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For the rest, I will in the developments of the following

paragraphs leave on one side the binomial equations and the

cyclic groups generally, in consideration of the gap which

separates them from the other cases, and only note the simple

results which relate to them in footnotes.

§ 5. March of the z^ Function in General

—

Development in Series.

The characteristic feature of the geometrical expression of

the functions z {Z), as we have given it in the preceding para-

graphs, consists in the fact that we have constructed, not a

many-leaved surface on the .^-plane, but a region-partition on

the 2;-sphere.* Having now to consider the march of the func-

tions z^ (Z), Zc^ {Z), we transfer our attention, accordingly,

again to tlu^ z-spliere. Leaving aside, as proposed, the cyclic

groups, we have to recur to the formulaB (11), which we will

write in the following manner

:

\X - 7
' F,i^;x)VF,\z,v} '•^2

-(17)

Here z^^ z,^, ^pp^ar Jis single-valued functions of position on a

two-leaved surface, covering the 2;-sphere, which possesses

branch-points at all points = or F^ — ^, or i^3= 0 (tlie point

0 = 00 not excluded), and therefore belongs to the deficiency :

(18) T
N(\ ^

*'1 *'2

We determine at once for the particular function its null

and infinite points, which of course must occur in equal numbers.

As concerns z^^^ it vanishes, and in fact sinq^ly f vanishes, for

all points of i'\=0, and also for 2j= oo, on the whole, therefore,

for ^— + 1^
points. On the other hand, it becomes simply

* In a similar manner, the march of any one-valued function Z— F[z) can

bo exhibited. Cf. for example, 0, Hermann: “ Geometrische Untersucliungen

iiber den Verlauf der elliptischen Transcendenten im complexen Gebiete,”

Schlomilch’s Zeitschrift, Bd. 28 (1883).

t We say of a function which becomes zero or infinite at a branch-point

Zq on a two-leaved surface, that it becomes simply zero or infinite, if it behaves

for a first approximation like C{z-Zq)^ or Ciz-z^Y^ respectively. If 2o=

we have to consider instead of (z-Zq) the expression i.
z
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infinite for all points of = 0, and those points of = 0 which

do not coincide with 2 = oo
;
the number of the infinite points

is therefore + lY which, in fact, is identical with T—

+

Xvg vg / \vi /

for the numerical value of N and v we are considering. Just

in the same way for z^, only that the two points 0 = 0 and 0= oo

(which both belong to the roots of ^’'3= 0) have exchanged

places.

We can now with little trouble display the nature of the

development in series of which our three functions 0, 0^, 0^ admit

in the neighbourhood of the singular positions ^=1, 0, 00. I

only complete this here so far as we use it in the following

paragraphs. Let us agree for a moment (as is indeed otherwise

customary) that shall denote the value
1
for 00 and

correspondingly 0- • 0Q the value - for
0^^
= 00

.

Further, let

be one of the values of 0 which belong to Z^ Z^. Then we have

directly, from the conformal representation of the preceding

paragraph, the following general theorem :

In the nciglihoxtrliood of Z^^l, Q, 00,0 — 0^^ admits of a do--

vdopncMt in an ascending series ofpotrers:

1 2

(19) + . .

where v is to denote the numbers Vg, in order
^
ami the co-

efficient a is different from zero.

We consider now in particular the case Z^= 00, 0(^
= 0, and

the corresponding developments of 0^, z^. The formula (2) to

which we must here return

:

contains on the left-hand side the factor ~ multiplied by a

rational function of 0*''», which for 0= 0 assumes the value -fl,

and for the icosahedron the value —1. Hence we have first

for 0 the development

;

(20) -(ff-SG).
where the minus sign only occurs in the case of the icosahedron
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and SS denotes a series proceeding according to integral

powers of ^ of which the first coefficient is equal to +1. We
consider now tlie formiilao (17). The quotient occurring in

1 ) 1
them -pr~,—

.

x breaks up into the product - and a

rational function of z^\ wliich again for is equal to +1,
but in the case of the icosahedron is equal to —1. Introducing

now for z the series (20), the two minns signs which occur in the

case of the icosahedron evidently destroy one another

^

1/3 icing an
odd numier in the case of the icosahedron. We obtain from

(20) and (17) the following seriesfor z^,

where series of powers which proceed according to

integral powers of ^ and begin with the term +1.

We shall not return to the formula) thus obtained till § 10.

Let us recollect, meanwhile, that c in the case of the dihedron

= — 1, for the tetrahedron =+l, while it has for the octa-

hedron the and for the icosahedron the value

§ 6. Transition to the Differential Equations of the
Thirh Order.

We now turn to the consideration of that differential equa-

tion of the third order with rational coefficients which z, as we
asserted above, satisfies in relation to Z, This has its origin in

the property that all the N branches of z are linear functions of

one of themselves^ and, in fact, in the following way: under-

standing by rj an arbitrary function of Z, let us eliminate

generally between --"-y and its first, second, and third differen-

tial coeflSicients the three constants a
:
/? : 7 ; S. We thus obtain

a differential expression of the third degree which remains
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unaltered for any linear transformations of 97. Now, substitut-

ing our z for 97, this differential expression, in virtue of the

property just explained of the N functional branches of z, will

take a determinate value independent of the branch which we
may choose. Therefore for rj—z the said differential expression

is a one-valned function of Z, and therefore also {since z is alge-

braic in Z) a. rational fnneiion of Z. Putting it equal to the

proper rational function of Z, we have the proposed differential

equation of the third order, which 97= 2 satisfies as a particular

solution.

Our first object is to actually construct this differential

expression of the third order. Let or, as we will

write it

:

+ Sf- /? = (),

and then on differentiating successively with respect to Z

:

+H' =0,

y(V'c^'29/'r+^r) =0,

y(v"i+ 3VT + +fn - «>/" - = 0.

In the three equations thus obtained, /? has vanished of itself,

the elimination of the other constants gives, after an easy

reduction

:

0 =
0 C v'

r V' ,

or, on separating the variables

:

C. (iy
C^2\C) f 2VW

The differential expression required is therefore

;

(22 )

ftt o / //\ 2

Y 2 V 97'/*

We will in future denote this by [97] or by \ri]z-^ We will.

* According to a communication for which I am indebted to Herr Schwarz^

this expression occurs in Lagrange’s researches on conformable representa-

tion :
“ Sur la construction dcs cartes g^ograpbiques,” Nouv. Mem. de I’Acad.

de Berlin, 1779. Cy. further Herr Schwarz’s often-mentioned treatise in

Bd. 76 of Borchardt’s Journal, where other literary notes are collected. In

the “ Sitzungsberichten der sachsischen Gesellschaft” of January 1883, I

have tried to demonstrate what deeper meaning is involved in a differential

equation of the third order M—fiz) if we start from the origin of the expres-

sion [ri] as it is treated of in the text.
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moreover, here estimate how [i;]z varies if we introduce instead

of ^ a new variable Z^. If

Z=F{Z,)Z'^^^,Scc.

there follow in order

:

y'
dZ^ dZ

'

d^-q = y'ii. j_ X"
dz;^ dZ^' dZ/ " ’

(T'^'q >'3 ,
y'"

dz}~,iz:^' ^Tz
Therefore

(23)

which is the required formula. If, in particular, Z depends

linearly on Z^,

az^+if

then disappears, and we have simply

(S4)

§ 7. Connection with Linear Differential Equations

OF THE Second Order.

Before going further, we will unfold the connection between

the said differential equation of the third order and the homo-

geneous linear differential equations of the second order, which

we shall have immediate occasion to utilise. Suppose that, in

general, a linear differential equation with rational coefficients

is given

:

(25) y''+v » y
'

• y = 0.

Understanding by any two partial solutions of it, let us

put

If we then allow Z to describe any closed path in its plane, 17

will only be able to pass over into a linear function of itself

F
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For after any such cycle, transformed

themselves into certain linear combinations of yg* Hence we

conclude that our r\ satisfies a differential equation of the third

order of the hind just considered :

(26) b]z-r{Z\

understandimj hij r{Z ) a rational function of Z,

Our next object must be to calculate this r{Z) in terms of

the coefficients 2^, q of (25). By supposition

:

+ ^ -2/1 = 0,

• 2/2'+ (Z • 2/2
= 0.

therefore combining the two equations

:

(27) (y/Vg - yffijx) = 0.

We have further

:

(28)
2/1 ^2 “ 2/2 2/1^^'

whence by logarithmic differentiation

:

v"y^- y".Vi _ 2 = 'f.

yxVi-y-iyx 2/2 i'

or, by virtue of (27)

:

(29)
V y2

On furtlier differentiation it follows that

:

and therefore, by combination with (29)

:

[v]z- — ^p^—p'—2^- — 22) .

2 2/2 2/2

Now the terms which here, on the right side of the equation,

contain yg are just equal to 2q by the differential equation of

the second order to which yg is subject. fFe therefore find :

(30) =

which is the final formula which we sought.

If to every linear differential equation of the second order
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(25) there thus belongs a definite differential equation of the

third order (26), then clearly to every differential equation (26)

belong infinitely many equations (25). We have only to put

(31) =

and in this p (as a rational function of Z, if we lay stress on

that point) can still be taken arbitrarily, q being hereupon

uniquely determined (and in fact again as a rational function

of Z ii p and r are rational).

Evidently (26) is completely solved, if one of the corre-

sponding equations is so too. Conversely, too, the solutions of

(25) are very readily given if the solutions of the corresponding

equation (26) are regarded as hioivn. We conclude, namely,

from (27) by integration in the well-known manner

:

(32) y^%- y.'y^ =

understanding by k the constant of integration. Combining

this with (28), there results:

(33)

The linear differential equation of the second order, there-

fore, requires, after previous solution of the corresponding

differential equation of the third order, only a single quad-

rature besides in order to solve it.

§ 8. Actual Establishment of the Differential

Equation of the Third Order for z[Z\

In order now to actually establish the differential equation

of the third order

:

Wz = r(Z),

which our satisfies as a particular solution, we make use of

what is contained in formula (19) with regard to the develop-

ment of in a series according to powers of {Z--Z^, We
consider the developments in series to be explicitly written

down, and from them a series calculated for \z\z by direct

differentiation. As initial term of this series (which, by the
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way, must proceed according to integral powers of {Z— since

[z'jg is a rational function of (Z)), we have for Zq=1, 0, oo,

respectively :

Now I say further, that lz]z will certainly not become infinite

for a position Zq which is different from 1, 0, or oo. At such a

position we have, viz. (as follows again from the conformal

representation)

:

z--z^ = a{Z-Z^)-\-h{Z-Z,;f+ . . .

where a ^ 0, and hence for [c]^ a series proceeding by integral

powers of {Z—Z^ and only possessing positive exponents. We
put in accordance with these results :

r(Z) = , ^
, ''iz}

ry 1 ' O.. 2 V2^ »

2v;\z-if 1 2^/ ^z:^ z

where A, C, will be constants, and these we must now so

determine, that the development in series, which r{Z) admits

in ascending powers of \ in the neighbourhood of oo, shallz

possess the initial term just given
2/2

result shows

that B, C are completely determined hy this necessity. In fact,

we have immediately

:

V 2_ 1 V 2__ 1

C= 0
, ^ + 5 = 0,^A.-J+’'l / +

2v,

Introducing these, our differential equation will he slmjdy

:

(34)
b\-- i+

v,2-l
1+1-2 -1
y 2~ y 2 ..2

+ 1

2v^\z- 1)2 2v22 . Z2 Y{Z/-^l) Z

where now for the numerical values of our table (3)

may be substituted.*

The three critical points Z=^l, 0, 00
,
just because one of

them lies at Z= 00
,
do not enter into this differential equation

For tbe binomial equation (1) we get as the corresponding differential

equation by direct differentiation :

r 1 1 1

2«* Z*'
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with a symmetry corresponding to their peculiar importance.

We shall at once remedy this if we introduce in place of as a

new variable some linear function of Z, which for ^=1, 0, oo,

assumes any three finite values a^. Making use of the

formula (24), but, be it noted, calling the new variable itself

Z again, we have :

(86) [,], - („. - a,) («,
- „,)

+— (<h
-

«s) («2- «l)

where now, as we see, all desirable symmetry exists.

§ 9. Linear Differential Equations of the Second
Order for and

The developments of § 7 put us in a position to give the

most general linear differential equation of the second order

with rational coefficients

:

"o P 9 „ 2 VZ— 1 9 i/ 2

(36) 2/"+i^-y'+(/-y==0,

which has two particular solutions whose quotient is equal

to our z

;

we have only to put, according to formula) (31), (34)

;

V^2—l v.2__l v/2 v-2 1,2

I say now that among these differential €(iuations there is always

one which the roots z.^ of our form-problem satisfy. In fact,

we recognise a priori that must be particular solutions of

a linear differential equation of the second order with rational

coefficients. Namely, let z^, zf, be two corresponding branches

of our functions, then any other branches express themselves

as linear homogeneous functions of these z^. They there-

fore all satisfy the following differential equation

:

y

dZ'^

d\^
dZ^

y y

0

dZ »

la! ^0
dZ 2

-0.
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We now conclude at once that the coefficients, which y", y', y
obtain when this determinant is developed, behave as rational

functions of Z, They are themselves, indeed, without further

consideration, rational functions. For if we replace z,^ by

any other j)air of corresponding branches of z^, z.^

:

these coefficients, since ah—Py by virtue of the definition of the

form-problem= 1, remain altogether unaltered, according to the

rule for the multiplication of determinants. Our object now is

to seek, out of the totality of the differential equations (36), the

one which z^ and z,^ satisfies.

Let 7/^, f^wo solutions of (36), such that Then

'ive will first calmlate generally

:

^ {vv y^)
-

^2 ivi > Vi) • -
3̂ ( //i > y-j)

{Vi > 2/2)

To this end we start from the equation

• 1)-^-

Differentiating this, and considering as before that is

always, save as to a numerical factor, the functional deter-

minant of ig obtain (c' representing a proper

constant)

:

1 )
' ~~

1)
* ’

or, on introducing another appropriate multiplier 0"

:

/'.Z. ./=1.
I<\ {?, 1) . {z, 1)

Here let us now put z = ^^. Then
2/2

c" . Z .
iVif 2/2)

(2/1^2 - 2/2Vi) = L
^^2 iVv 2/2) • -^3 (Vv ^2)

or finally, embodying the symbol X and the formula (32) also

;

(37) X{y^,y^)=^k.c"

which is the formula we required.
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Now for the solutions z^ of our form-problem, not only was

— = 2;, but it was determined that X (z^, z^) was to be inde-
h
pendent of Z. We shall therefore have to take the coefUcdcnts p
of the correspqndimj linear dijferential equation in svch a way

that Z disappears altogether from the corresponding formida (37).

This gives, as we see,

qSv<3‘Z^2i or ^ =
Zi

Introducing this value into (36), we obtain the differential

equation which we sought. This, after some easy modifications,

runs as follows :

-0.

§ 10. Relations to Riemann\s P-Function.

We now have all we require in order to calculate by a series

of powers z-^, and from them z= in the neighbourhood of

any position Z = Zq. In fact, we saw in § 5 how we could deter-

mine in an individual case the nature of this series of powers,

and have now simply to substitute the series itself in (38) in

order to find the coefficients in the series which still remain

unknown. If we wish to effect this in particular for the

neighbourhood of the point Z = co, we can use the formulae

(21) immediately.

If I do not more explicitly carry out the step here proposed,

nor discuss more closely the convergence and the analytical law

of progression of the developments suggested, it is because we

have meanwhile obtained all the preliminary conditions for

basing the investigation of the functions z^, z^ on a ready-

prepared and well-known theory. I mean the theory of

Biemanns P-functions

:

/i'y, «)

For the solutions «i, Z2 of the form-problem of the cyclic group, we find

in a similar way

:

V _
Z 4^n^Z^

= 0.
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and the representation of their several branches by the hypergeo-

metriful se^ries of Gauss* I have already said that I will not

take for granted any previous special knowledge concerning the

P-functions. We may therefore define these functions in the

way which most conveniently fits in with our previous develop-

ments, viz.y as solutions of the foUmoing differential equation of

the second order

:

(39)
P'

X (1 — ic)

+ 3!-

[(1 — a — tt') — + •c]

[aa'— {ail + - yy) x+ /?/?V] = 0,

where a+a +P+IT is always to be taken equal to l.f

Clearly (38) is a special case of (39); to obtain (38) we have

only to write

:

P=y,.^^Z,o.= -a -p y =-i^.

which is reconcilable with the condition a+a'+^+/^^+7+7^
= 1, since is in all our cases = 2. Therefore are with

reference to the particular value of special cases of the func-

tion :

/I 1 1 \

(40)
21^3 4

L 3

\
‘2^, 2.3 4 /

We can now characterise more precisely our functions z^,

among the general ones denoted by this symbol. It is just for

this purpose that I have established the formulae (21) explicitly.

Jl.

If in these we multiply by and z^ by Z the products

remain finite for ^2'= 00
,
and different from zero, and, moreover,

* Any one who wishes to enter on these theories will find it still the best

plan, in addition to Gauss's “ Disquisitiones generales circa seriem infini-

tam,” &c. (1812,
Works, t. iii.), and Rummer^

a

memoirs on the hyper-

geometrical series (1836 ,
Crelle’s Journal, Bd. 15 ), to study the original work

of Riemann

:

“ Beitrage zur Theorie der durch die Grauss’sohe Reihe F(a, /!?, 7,
x)

darstellbaren Functionen” Bd. 7 der Giittinger Abhandlungen (1867), or

Werke, p. 62-82).

t This differential equation is obtained by an easy modification from that

which Riemann gives specially for P ^ y
(Werke, p. 76).
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are continuous in the neighbourhood of the point co. The

formulce (21) there denote just such series as liiemann introduced

L c, under the title PW • only that Kiemann leaves un-

determined the first coefficients of and If we choose

them, in particular, as is done in the formulae (21), we can

say, finally, that our are specially those among the general

P~functions (40), which spring from the series P^^\ hy any

analytical expansion.

With this theorem we have reached the object of the deve-

lopments of the present chapter. I wished to show that our

functions z^ z^, z^ belong to those into which the modern theory

of functions, both by its geometrical representations and its ana-

lytical weapons, obtains a, so to say, complete insight. Granted

this, we have thus at the same time attained to a point of view

which is to serve us in the second part of our exposition, viz.,

it then appears reasonable to reduce more complicated algebrai-

cal functions, so far as is j^ossible, to our present ones z, z-^, z.2^.

But, moreover, the developments here given can only be con-

sidered, even more so than our other ones, as an introduction.

In fact, our intention of putting the argument in the most

elementary form possible has hindered us from explaining a

point which is really the most interesting, viz., how the linear

substitutions to which we have subjected z^ and z.^ respec-

tively in the preceding chapter now come into prominence,

when we look upon Zj z-^, z^ as functions of Z, and allow the

latter variable to traverse a closed path in its plane. We should

also have been able, if we had followed the proposition given in

§ 5 a little further, to find the direct transition to Riemann’s

P-function without 23reviously having formulated exjDlicitly the

differential equations. I leave it to the reader to familiarise

himself, by his own studies and reflections, with these and allied

questions.
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CHAPTEK IV

ON THE ALGEBRAICAL CHARACTER OF OUR
FUNDAMENTAL PROBLEM

§ 1. Problem of the Present Chapter.

Having iu the previous chapter discussed our fundamental

problems only under the aspect of the theory of functions, let

us now treat them from the point of view of the theory of

equations. I understand by this latter, the aggregate of the

theories which relate to the rational resolventSy i.e,, to those

auxiliary equations which any rational functions of the roots

of the given equation satisfy.

A first and important portion of this theory, which distin-

guishes the nature of the resolvents coming generally under

consideration, is formed by those reflections which, in accor-

dance with the fundamental ideas of Galois, are usually de-

noted by his name, and which amount to characteHsing the

individual equation, or system of equations, by a certain group

of interchanges of the corresponding solutions (the word group

being taken in the same specific sense which we have explained

in the first chapter). I will, in paragraphs 2--4 following, make
mention of the foundations of this theory so far as seems neces-

sary for understanding what follows, but I refer otherwise to

the text-books already mentioned above,* and this not only for

the more thorough completion, but especiallyfor the proofs. On
this basis it is very easy to characterise our fundamental pro-

blems in Galois’s sense (§§ 5, 6). In particular, it follows that

these must all admit of solution by extraction of roots, with

the sole exception of the icosahedral equation, whose lowest

resolvents are of the fifth and sixth degrees respectively. I

See remark on p. 6 mpra.
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shall, in the concluding remarks of this chapter (§ IG), draw

attention more in detail to the prime importance of this result.

Howbeit, it is not sufficient in any given algebraical pro-

blem to know the nature of the resolvents
;
we require, further,

to actualbj calculate these resolvents, and this in the simplest

manner. The second part of the present chapter is concerned

with this, with strict limitation to the questions immediately

surrounding our fundamental problems. I show, first of all

(§ 7), how we can actually construct the auxiliary resolvents

by means of which the solution of the dihedral, tetrahedral,

and octahedral eqiiation is to be achieved. I concern myself,

then, in detail with the resolvents of the fifth and sixth

degrees of the icosahodral equation (§§ 8-15). The particular

equations of the fifth and sixth degrees, which we so obtain,

will be of essential importance for our later developments.

Here it is primarily the method on which I wish to lay stress

now
;
a method which makes use at one time of tlie theory of

functions, at another of the theory of invariants, and in both

directions seems capable of an extension to higher problems.

§ 2. On the Group of an Algebraical Equation.

Our object now being to define the group which belongs to

each individual algebraical equation from the point of view of

Galois’s theory, we will first consider the classification which we

can derive for the rational functions of n variable magnitudes

:

from their behaviour towards the permutations of the a;’s. It

is clear a priori that all permutations of the x'a which leave

unaltered such a rational function form a group which is con-

tained as a sub-group in the totality of the permutations (or,

perhaps, is identical with this totality). But the converse is

also the case
;
as soon as any group of permutations of the x's

is given, we can always construct such rational functions of the

oj’s as remain unaltered for the permutations of this group, but

for no other. We call these rational functions of the i«’s those

belonging to the group of permutations, and now classify gene-

rally all rational functions of the aj’s which occur according to

the group of permutations to which they belong.
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We must further acquaint ourselves with the so-called

theorem of Lagrange,"^ Let R and be two rational functions

of the and let B remain unaltered by all permutations which

make up the group appertaining to B^ (where, of course, it is

not stated that B must belong to the same group). Let,

further, 5^, be the elementary sums of powers

:

(1) = A • • S„ =^J X”.

Then the theorem alluded to declares that B can be represented

as a rational function of B^ and 5^, Sg, . . . We can easily

generalise this theorem still further by considering, instead of

a number of rational functions : B.^, ... to be given,

and assuming that B remains unchanged by all those permuta-

tions which leave 72^, B^t . . . simultaneously unaltered. Then

B %oill he a rational finction of ^2 » • • •

In fact, we can compose rationally of the B^, i?
2 >

• • • ^ rational

function B! of the which only remains unaltered for those

permutations of the aj’s which leave B^, jRg, . • . simultaneously

unaltered. According to the first application which we made
of the theorem of Lagrange, B will then be capable of being

represented rationally by means of this B' and the s^, s,^y . . . Sn,

whereupon our new assertion is proved eo i^m.

Now let the equation of degree be given :

/(•«) =

whose roots are to be the x^y ajj, . . . Xn-i previously considered.

Then, in any case, we know the values of the 5; (1) ;
and hence,

by rational processes of operation, the rational symmetric func-

tions of the a’’s generally. But it may happen that some un-

symmetric functions of the x^s : B^, B^y . . . are given us. Then

we can, on the ground of the expanded Lagrange theorem, com-

pute generally every function B of the a;’s in a rational manner,

which remains unaltered for all permutations which at the same

time leave B^y iZg, • • • unaltered. Therefore we shall always

have those rational functions of the x^s, and only those, “ rationally

known (as we will say)y which remain %inaltered for a deter--

minate group ofpermutations of the x's.

* “Rdflexions sur la rdsolution algdbrique dcs dquations.” Mem. de

I’Acad. de Berlin, t. iii. (1770-71), or CEIavres, t. iii. (§ 100 of the Memoir).
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The theory here sketched is first applicable, as we said, to

the case of x'b altogether independent. But now the point is

that there exists in every special case also an analogous theory. If,

in such a case, we say of a function that it reinains unaltered

for certain permutations, we understand thereby that it does

not change its numerical value. There is always, then, such

a group G ofpermutations of the oh that all rational functions

of the x^s which remain unaltered for G, and only these, are

rationally hnown. Besides this, the law holds good that all

permutations of G v:hieh leave unaltered any given rational

function of the o*s in each case form a group, so that, in relation

to the permutaiions of G, the classification of rational functions

just described and also the theorem of Lagrange are retained with

no exception. The group G is then that whicli Galois describes

as the group of the cfpiation*

The difficulties of the Galois theory lie, perhaps, less in the

general theorems here formulated than in the notion of being

rationally known ” which is employed in them. When shall

we apply this description to functions? We must do so if (in

consequence of special values of . . .)
they have rational

values, i,e,, are equal to rational functions of tlie s^ (with rational

numerical coefficients). But we can do so for quite arbitrary

functions B^, B^, , , , if we assume that we have already by some

means computed the values of B^, B^, , , , We then adjoin,

as Galois expresses it, these B^, • • • ^i^d accordingly widen

the rationality domain, to use the language of Herr Kroneclcer,\

in which we operate. In this sense the statements which the

Galois theory makes concerning the individual equation f{x) = 0

are to a certain degree dependent on our subjective interpreta-

tion. If we adjoin the whole of the roots of f(x) = 0, the group

of the equation always consists of identity alone. We must

therefore abandon the conception that an equation of the n^^

degree with a grouj) which we describe as of limited extent

must therefore necessarily have in any sense specified co-

efficients.

* See “ (Euvres de Galois,” in Liouville's Journal, t. xi. (1846).

t Cf. here, Kronecker, ” Grundziige einer arithmetischen Theorie der alge-

braichen Grossen” (Bd. 92 of the Journal fur Mathematik, 1881).
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§ 3. General Remarks on Resolvents.

Now lot G again be the group of the equation f{x) = 0, iV'the

order of the group. The only assumption to which we subject

G is that of being transitive
^
i.e,, of embracing permutations in

virtue of which the individual root of /= 0 can replace any

other root Otherwise /(.>?) = 0 would be rcdunhle, i,e,, would

split up into rational factors, and we should therefore be able,

instead of /(.r) = 0, more effectively to consider the several equa-

tions which arise from equating to zero the individual factors.

We now choose any rational function Rq of the roots Xy such

as does not remain unaltered for all the permutations of Gy and

therefore is not rationally known, though it may remain un-

altered for some permutations in number z/, which form a

group //q. For the permutations of Gy Eq assumes on the whole

N— = different values

:

V

Rqj En^ V

We then form the equation on which these different values

depend

:

{R-E,){E^R,) =

We have thus evidently obtained an equation whose coefficients

are rationally known, for they are symmetric functions of the

different ITs, and, as such, invariant for the permutations of &•

This is what wo denote as a resolvent of the foregoing equation

f(x)= Qy and indeed, when this may be of importance, as a

rational resolvent, inasmuch as on it a rational function of the

a/s depends.

We inquire as to the totality of the different kinds of resol-

vents which f(x) = 0 possesses. In this respect we may make
the following’^convention beforehand. If we had chosen instead

of Rq another rational function of the roots, which equally apper-

tains to g^y it would, by Lagrange’s theorem, admit of rational

expression in terms of Rq and the known rational quantities

;

the new resolvent would therefore result from the former (and,

similarly, the former from the new one) hy rational transforma’-

tion. We will agree to look upon as altogether identical two

resolvents of this kind in the general survey of them which

will be given here. Then to every group there appertains

always only one corresponding resolvent.
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But the same resolvent also arises if we start from certain

other sub-grou'ps instead of In fact, instead of beginning

with the root Bq, we can, in the construction of the resolvent,

just as well put one of the other roots B^, B^, ... in the fore-

ground. Then, in place of g^ those groups of permutations of

the occur which respectively leave unaltered B^, B^, . . .

and which we will denote by g^y • • • • inquire how

these gl^ are connected with the original g^. Let Si be one of

those permutations of the oj’s by which Bi is transformed into

Rq
;
the totality of such permutations will then be given by

SiT^^\ understanding by the several permutations of g^ in

turn. We now combine with SiT^^^ the inverse operation Sf'^.

Then B^ is transformed back into Bi, Hence Bi remains un'-

altered for all per7nutations

:

T0)= Si.TKSr^.

Now, conversely, from every for which Bi remains unaltered,

a can be derived by the corresponding method in the form

:

T^ = Sf^.Ti^KSi,

This new formula is, as we see, the immediate solution of that

just given
;
we have therefore in this latter defined the whole

of the permutations generally which leave Bi unaltered, i.e,, the

group gi. The group gi therefore proceeds from g^ throiigh trans-

formation hy Si,

Now Si (if we take into consideration all the roots Bq, B^,

. . . ^n-i) li®re be any arbitrary permutation of G, For

by Sr^ some one of the Bi must always proceed from B^,

Consequently, we can describe the groups • • • ^n-i ^.s

the totality of those which exist within G by transformation

from gQ, Such groups we have previously described as asso-

ciates. Hence we have, finally, to sum up what has gone

before, the concise theorem: that there are as many different

hinds of resolvents of a proposed equation f{x) = 0 as thei'e exist

different systems of associate suh-groupts within the corresponding

group G,

We now determine the group P of the individual resolvent

so obtained. I say that it will he constructed of those per^nuta-

tions of the Rs which occur when we subject the x's to the pe7'-

mutations of G, For a rational function of the B^s which

remains unaltered under the said permutations of the B'^ is,
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at the same time, when considered as a function of the

unchanged for the permutations of G, and, conversely, it can-

not be the latter if the former is not the case. The group P
is, therefore, for every case, isomorphic with the group G,

Here we must now make an important distinction. The
isomorphism which has been found can be simple or multiple.

The latter occurs then, and only then, when such permutations

of the a;’s exist within G, as leave unaltered the whole of the

/jJ/s
;
these permutations will then form a group 7,

which is self-

conjugate within 6r. The resolvent plays an entirely different

part with respect to the original equation in the two cases.

In the first case, we can compose rationally every rational

function of the aj’s, and in particular the a?^s themselves, from

the 7i?/s, with the help of the known quantities. The original

equation is, therefore, itself a resolvent of the resolvent; the

solution of the one equation ensures that of the other, and con-

versely. On replacing the equation f{x) = 0 by its resolvent, it

is true we have attained a modification of the original problem,

but in no way a simplification thereof.

It is quite otherwise in the second case. The aj’s are in it

by no means rational in the iiVs. If we have computed the

i^/s, the original equation f{x^= 0 has yet to be solved. This

problem is now simplified only so far as the group G is now
(after adjunction of the /i^/s) replaced by 7.* But, on the other

hand, the determination of the ii^/s themselves is more easy to

carry out than the computation of the x’s
:
for the group p of

the corresponding equation is* smaller than G, We have there-

fore decomposed the original problem into two steps of a more

simple character.

Clearly the resolvents of the second kind are the more

important. They can only occur when the group G of the

proposed equation is compound. By studying in such a case

the decomposition of G, we have, at the same time, the means
of simplifying, step by step, the equation f{x) — 0, by means of

a complete series of resolvent auxiliary equations. It is just

this significance of resolvents which the ordinary theory makes

use of in the solution of the equations of the third and fourth

degrees.

Hereby /(ir)= 0 may possibly have become reducible (even if 7,
when

expressed in terms of the a’’s, is not transitive).
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§ 4. The Galois Resolvent in Particular.

According to what has just been said, all resolvents whose

group p is simply isomorphic with the group G of the pro-

posed equation f{x) = 0 represent, in the abstract, equivalent

problems. But there is one amongst them which, for the

purpose of algebraical exposition, possesses quite a special

significance: it is that which we are accustomed to call by the

name of the Galois resolvent, and which is defined, by the fact that

its individual roots are altered for every permutation of the x^s

'which is contained in G. Therefore the groups g^,

which we just now made to correspond to R^, ...» then all

reduce to identity, and simultaneously the degree of the re-

solvent becomes as high as possible, viz., equal to N. On the

other hand, it offers this advantage, that we need only com-

pute one of its roots. In fact, by Lagrange’s theorem all

rational functions of the a:’s must express themselves rationally

in terms of this one root and the known quantities.

But let us consider more closely the properties of the Galois

resolvent.

First as regards its group
;
for every one of the iV-opera-

tions of the group G, each of the A'-roots

will be replaced. There are, therefore, no two operations of G
which would both bring the same root Hi into the same posi-

tion Rje : the individual operation is fully determined provided

only we know in what way it influences an individual Ri, In-

troducing the notion of transitivity, as it has already been used,

we can say

:

The group P of the Galois resolvent is just simply transitive*

We can, therefore, denote the individual permutation of p
by the index of that root 72* which proceeds from R^ by means

of it. In this sense we will forthwith make use of the symbol

We now express rationally, by means of the theorem of

Lagrange, the different roots R^, . . . Rn^^^, in terms of

the first of them. In this manner N formulae arise, which we
write in the following way

:

(2) 7^0“ -^1 “ V'i(7^o)
• • • ==

G



98 I, 4--THE ALGEBRAICAL CHARACTER OF

Here the >/r/s denote rational functions of the accompanying

argument, which are only so far completely determinate that

we shall not modify them by the help of the Galois resolvent

itself, and is of course only written instead of itself

for the sake of uniformity. Wo select one of these formulae

and write (neglecting the former indices of the R'b) :

(3) R'-^UR).

and consider the Galois resolvent transformed by the help of

this formula (by eliminating the R between the resolvent and

the formula (3)). Thus arises an equation of the order Wfor R'

which, in any case, has the root Ri in common with the original

Galois resolvent. Now, the resolvent is by hypothesis irre-

ducible. Hence the two equations of the degree have all

their roots common, i.e,, they are identical. We have, therefore,

the theorem :

The Galois resolvent will he transformed into itself hy the N
rational transformations (3).

If we therefore substitute in formula (3), instead of R^ any

root Rj^, R' will become equal to another root J?;. But, instead

of we can write and '^fRo) instead of Rj. Hence

:

and therefore generally

:

SO far, namely, as we disregard the changes which can be

wrought on the individual symbols of this expression by the

help of the Galois equation satisfied by the Ri, In this sense

we have

:

The N rational transformations (3) form a group.

We ask how this group is connected with the Galois group

p. If wo replace, in the formulae (2), the R^ on the right

hand by Rq, . . . Rn^\ order, we obtain on the left-hand

side, in consequence of what has just been said, the roots Ri

again, in each case in altered sequence. We obtain, therefore,

N different arrangements of the i2’s, and now the assertion may
be proved that those N permutations^ hy which these arrange--

ments proceed from the original arrangement, just make up the
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group p. For this purpose we will show that a rational func-

tion of the

F{R„ . . . R^_,),

which remains unaltered when we replace the sequence R^,

. . . Rif_i by any of the other N orders in question, is

rationally known. In fact, every rational function of the JK/s

can in virtue of (2) bo compressed into the form ^(Rq), If,

now, F admits the changes mentioned, it will be just as truly

equal to or equal to ^(R^), &c., understanding in every

case by ^ the same rational function. Therefore also

therefore F is equal to a symmetric function, and hence, in

fact, can be rationally computed, as was asserted.

The relation between f and the group of the transforma-

tions (3) thus found wo will investigate more closely. If we
put Rje instead of Rq on the right-hand side of (2), Rff. appears

also on the left-hand side in the first position. We therefore

obtain the same order of the i2/s as proceeds from the original

one by the operation of p. Now writing instead of Rj^ (on

the right-hand side) (Rq) throughout, we can say as follows :

The operation is that which replaces = 0, 1, . . .

Similarly the operation Si will be that which replaces

by ‘>^c^i(R^, or, what is the same thing, which replaces

by '^i^k^i(J^'o) (where in both places we will allow i to range

from 0, 1, to (W— 1)). If we combine the two theorems thus

obtained, by applying first Sjc and then Si, it follows that

:

For the operation Sj^Si, '^{(R^ will be replaced

The relation which we find in this form between the groups

of the /S’s and of the is at first not one of isomorphism.

For SjcSi denotes that we first apply Sj^ and then Si, while

yjricyfri(RQ) says that we first compute the yjri of Rq and from it

the But we can directly so modify the relation that

isomorphism results. To this end we need only make Sjg to

correspond to the inverse operation In fact

= Hence we have:
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The groups of the S's and of the yfr*s are simply isomorphic.

The theorems thus formulated are the more important

because we can reverse them without further trouble. In fact,

we find, if we repeat what has been already said in a different

order

:

If an irreducible equation of the degree is transformed

into itself by N rational transformations

:

=

it is its own Galois resolvent, and its group p stands to the group

of the yjr^s in the relation just explamed.*

If, then, for such an equation, a rational function of the roots

is constructed which remains unaltered for the permutation Sj^

of a certain sub-group contained in the Galois group, and thus

can be introduced as a root of a corresponding resolvent, it is

sufficient to establish a rational function of the single root Rq,

which will, for the corresponding be transformed into

itself
;
for the sub-group of the yjrjjH contains at the same time

all the and, therefore, corresponds to the sub-group of

the Sje^B in the isomorphic co-ordination.

§ 6. Marshalling of our Fundamental Equations.

I have framed the foregoing paragraph in such detail in

order to be able to now marshal directly our fundamental

equations in the scheme of the Galois theory, to wit, the bino^

mial equations and the equations of the dihedron, tetrahedron,

octahedron, and icosahedron. Let us first agree that our equa-

tions are irreducible. From the considerations in the last

chapter, based on the function theory, it follows, that the

i\^-function branches, which are defined by the individual equa-

tions, on regarding in each case tho light-side .^as independent

variable, are all connected with one another. Therefore the

hypotheses are exactly fulfilled to which the concheding theorem of

the preceding paragraph relates. For the iV^roots which any

particular one of our equations possesses do in fact proceed

This theorem must not be confused (as it occasionally has been) with the

definition of the Abelian equations. For these also there are N rational

transformations R'—xf/iiR), but it is further assumed that the ^’s are per-

mutable, and that therefore
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from any one of their number in each case byN rational trans-

formations, viz., by the N linear substitutions well known to us.

Thus we have at once : oiir equations are their own Galois re--

solvents^ and we can now immediately draw further conclusions

by adopting what was said above concerning the groups of the

corresponding (non-homogeneous) linear substitutions.

Let us first select, say, the octahedron^ and recall that the

group was composed of the 24 octahedral substitutions. In it

the tetrahedral group of 12 substitutions was contained as the

most comprehensive self-conjugate sub-group
;

in this again

the quadratic group (of 4 substitutions), and in the latter,

finally, a cyclic group of 2 substitutions. We conclude there-

fore: that we can solve the octahedral equation by a series of

4 auxiliary equations whose groiijis are respectively
24 12 4 .

12’ 4 ’ 2’ ’

i.e,, contain 2, 3, 2, 2 permutations. A group whose degree

is a prime number is necessarily a cyclic group. If now with

Lagrange we add to this that every cyclic equation of the

degree can be replaced by a binomial equation of the n^^

degree,*** we recognise that: the octahedral equation can he

solved by extracting in succession a square rooty then a cube rooty

andy finally, two more square roots. We will confirm this in

§ 7 by explicit formulae.

As regards the tetrahedral equation, this is itself solved at

the same time by what was said concerning the octahedral

equation
;

for the tetrahedral group is a self-conjugate sub-

group of the octahedral group. For the dihedral equation of

degree 2n, we find that it must admit of reduction to a binomial

equation of the degree by extraction of a square root. And
finally, the solution of the binomial equation itself can then,

and only then, be decomposed into several steps when its

degree is a composite number.

Thus the icosahedral equation stands alone by the side of the

binomial equation of prime degree, as the only one of our equa-

tions which we cannot reduce by the construction of resolvents.

* The equation of the degree is called cydic if its Galois group is cyclic,

and therefore contains, say, only the cyclic permutations of (xq, a?i, . . . Xn-i),

The method then consists, as is well known, in introducing as the unknown

2iir

magnitude aco+casi • . . scn-i* where €=c ^ .
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If we wish to construct resolvents for it as well (as we do in

§ 8 following), our earlier researches on the icosahedral group

teach us that, as the lowest resolvents, those of the fifth and sixth

degrees come under consideration. The former correspond to

the circumstance that the icosahedral group contains 5 associate

tetrahedral groups; the latter to the other circumstance that

it contains G associate dihedral groups of 10 operations each.

These resolvents will in both cases possess again a Galois group

of GO permutations. We can say directly, from what has gone

before, that these, for the resolvents of the fifth degree, are the

60 even permutations of the roots, and that, therefore, the

product of the differences of the roots must be rational. We
shall not determine more exactly the group of the resolvent of

the sixth degree till later on (§ 15).

While we thus take advantage of the results of our previous

investigations for dealing with the Galois theory, we must cer-

tainly not overlook one important circumstance. We are only

entitled to reckon the linear functions of our substitution

groups among the rational functions of the preceding j)ara-

graph, provided that we suppose the coefficients occurring in the

formulae of the linear substitutions as rationally known. These

are certain roots of unity. We must therefore suppose these roots

of unity adjoined, in order that the foregoing statements may he

accurate. In the case oC the icosahedral equation, for instance,

we must adjoin the fifth roots of unity, ix,, the numerical irra-

tionalities which are determined by the equation

:

Let us explain by this example the consequences which would

otherwise ensue. It is known that the foregoing equation of

the fourth degree has a cyclic group of 4 permutations,* a group

therefore which contains a self-conjugate sub-group of 2 per-

mutations. We conclude that the icosahedral equation now
possesses a group of 4*G0 permutations among which a sub-

group of 2*00 permutations, and then one of GO permutations,

is self-conjugate. This new group of the icosahedral equation

need by no means necessarily be transferred unchanged to the

individual resolvent of the icosahedral equation. Indeed, for

See, e,g., Bachmann, “ Die Lehre von der Kreistheilung,” Leipzig (1872).
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the resolvents of the fifth degree this is a yriuri not possible,

since their group can never contain more than |5 = 2‘G0 perinii-

tations. In fact, only Jb occurs as a numerical irrationality

in the formulee which we shall establish in § 14 for the diff(U'-

ence product of our resolvent of the fifth degree, so that the

adjunction of the individual fifth root of unity is by no means

necessary to reduce the group of the resolvent to only GO per-

mutations. We do not pursue this matter further, because it

would involve us too deeply in considerations app(u*taining to

the theory of numbers.*

§ 6. Consideration of the Form-Proj^lems.

Wo further consider in a few words the form-problems which

run parallel with our equations. Tliese are systems of equations

with, in every case, two unknowns, z^y We shall be able to

apply the fundamental ideas of the Galois theory throughout to

these systems of equations by substituting, whenever in these

latter mention is made of the roots of an equation, the indi-

vidual pairs of solutions z-^y In particular, we shall then be

able to say that our forni'-ijrohlems are tlwir own Galois rc-

solvents. In fact, all the 2N systems of solution which our

form-problems possess are derived from the individual systems

of solution by 2N linear homogeneous substitutions, which are

known a prior It is here, therefore, the hoinofjeneous linear

substitution-groups of our earlier exposition which determine

the Galois group of the problem in question.

These homogeneous groups were all compound, inasmuch as

they contained a self-conjugate sub-group, which consisted of

identity and the following operation

:

We thence conclude that our form-problems must always admit

* We have, in the text, represented the Galois theory as practically known,

and then deduced from it properties of the icosahedral equation, &c. On the

other hand, the beginner cannot be too strongly recommended to reverse the

whole method of consideration, and to employ the properties of the icosahedral

equation, &c., in order to extract from them, as a simple example, the general

ideas of the Galois theory.

t The roots of unity here occurring figure in the text again as adjoined

quantities.
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of solution if we first solve an equation with a group of N per-

mutations, and then extract a square root. This is now just

what we have already effected in § 2 of the preceding chapter,

while dealing with the reduction of the form-problems. It will

be superfluous to spend further time over the details of this.

§ 7. The Solution of the Equations of the Dihedron,

Tetrahedron, and Octahedron.

Turning now to the communication of the proposed formulea

of solution for the dihedron, tetrahedron, and octahedron, we
again commence with the consideration of the octahedral

equation. We write it as before:

(4)
108^^

= Z.

We will then introduce, as a root of the first auxiliary equation,

such a rational function of z as remains unaltered for the 12

tetrahedral substitutions. It is clearly the simplest plan to

choose for this the right side of the corresponding tetrahedral

equation. Denoting this by we have

:

(5)

*3

We further choose, as the unknown of the second auxiliary

equation, corresponding to the quadratic (jroivp,

(
6)

and, finally, as the unknown of the third auxiliary equation, the

right side of the binomial formula:

(7) (S)’.Z..

The fourth auxiliary equation will then simply arise in calcu-

lating from this the = z itself.
^2

In order now to actually construct the auxiliary equations on

which Z^, Z^y Z^y and, finally, ^ depend, we need only recall

that all rational functions of Zy which remain unaltered for the
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tetrahedral substitutions, are rational in ;
that, similarly, all

rational functions of 2, which remain unaltered for the substi-

tutions of the quadratic group, are rational in Z^, &c. Hence

(if we further consider the degree of the functions in question)

^ is a rational function of Z^ of the second degree, this again a

rational function of Z^ of the third degree, Z^ in its turn a

rational function of Z.j^ of the second degree, and itself, as

is already noted in § 7, a rational function of 2 of the second

degree, A glance at our earlier formula) suffices to actually

construct these rational functions. We find in order:

(8)

(9)

(10)

-12Z,

1+ 7 -S')
-—2' r

4Z3
•“^3.

and finally, as is self-evident

:

( 11 )

It is just these form idai, in which vui nov' consider Z^, -^3, and

z in order as the 'unknown, which are the auxiliary equations

we sought. It will be observed in particular, that the cubic

auxiliary equation (9), as we had proposed, only needs a cube

root for its solution.*

The tetrahedral equation is, without further trouble, solved by

the way in these formula3. In fact, we need only, in order to

deal with it, allow the sequence of auxiliary equations to begin

with (9). But the general dihedral equation also:

(
12 )

offers no difficulties
;
in order to reduce it to a binomial equa-

tion, we need only, exactly as we did just now in the case of

the quadratic group, introduce as the new unknown,

(13)
(a)-.z..

The appearance of the irrationality a in (9), which distinguishes it from

the rest, is the equivalent of the fact that, in order to reduce a cyclic equation

of the third degree to the binomial form, we have always, as we remarked

just now, to bring a to our assistance.
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We have then for the quadi-atic equation:

(14) _fcL)2 = Z,

and afterwards calculate ^ from the binomial equation (13).
h

§ 8. The Resolvents of the Fifth Degree for the
IcOSAHEDRAL EQUATION.

Turning now to the icosaliedral equation, we investigate

first, and in detail, the resolvents of the fifth degree. We here

use from the first the same fundamental theorems as were

applied in the preceding paragraph. For the individual tetra-

hedral group contained in the icosaliedral group a triply

infinite number of rational functions of the twelfth degree of z

remain unaltered, as we previously ascertained, which functions

express themselves linearly in terms of any one of them, which

we will call r, but which we will only fully define later on.

Introducing this r as the unknown, the required resolvent of

the fifth degree takes the form

:

(15) F(r) = Z,

where F is a rational function of the fifth degree with numerical

coefficients, and Z is the right side of the icosaliedral equation.

Our object will be to determine F, This is, of course, at once

attained if we establish r explicitly as a function of and take
h

into account, besides, the left side of the icosahedral equation.

Howbeit, the matter is somewhat more complicated than in the

case of the preceding paragraph, and hence I prefer to develop

in the following paragraph a method by which we can determine

the value of F{r) without recurring at all to the formulae in z,*

By the side of this first, which might be called the function^

theory method, another presents itself—the invariant method.

This is connected with the homogeneous substitutions of z^^ z^

and the corresponding forms which remain unaltered; it is

related, therefore, in the first place, to the problem of the

I have repeatedly used this method in Bd. xii of the Math. Annalen,

p 175, and Bd. xiv, p. 141, 416, &c. (1877-78), in order to establish equations

defined in an analogous way.
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icosahedron, and we shall only in a supplementary manner

change the results obtained from it into resolvents of the

icosahedral equations.

We have in § 1 of the preceding chapter collected, for each

of the homogeneous groups of substitutions there described,

the complete system of the corresponding entirely invariant

forms. For the 120 substitutions of the homogeneous icosa-

hedral group these are the forms /, H, 1\ themselves. On the

other hand, for the 24 substitutions of the homogeneous tetra-

hedral group there are the corresponding octahedral form, the

associated cube W, and a form of the twelfth degree, for

which, however, we can now put /, which is a linear combi-

nation of and X* The most general entirely invariant tetra-

hedral form is therefore an arbitrary integral function of t, W,

and/ (homogeneous in

Let G be such a form. Assuming that it does not, at the

same time, remain unaltered for the icosahedral substitutions,

we obtain from it, by means of the icosahedral substitutions,

5 different forms, which we will denote by Gq, G^, . , » 6^

4 . We
construct the product

;

fj {G-g,).

V

Here the coefficients of the different powers of G are symmetric

functions of the G^^, i.r., icosahedral forms. Hence G will

satisfy an cyitation of the fifth dcyrcc

:

(16) hG^+ cG^ + dG+ e = 0,

in which the coefficients a,h, . . . arc intcyral functions of the

/, H, T, The calculation of these coefficients is achieved im-

mediately. For since we know the degree of the 6r„*s in z^, z^,

we know a jjriori that a, h, c, , , , can be composed linearly

only of determinate combinations of /, H, T, finite in number,

and all that is then required in order to determine the remain-

ing unknown numerical coefficients is a comparison of a few

terms in the explicit formulae forf H, T, and G.

In order now to transform the equation (16) into a resolvent

of the icosahedral equation, we will multiply G, or divide,

respectively, by such powers of f H, T, that there results a

rational function of null degree of ix,, a rational function
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of z. We have then simply to introduce this function in (16)

as the unknown, instead of G, whereupon the coefficients a, h, c,

. . . will be of themselves transformed into rational functions

of

So much for the invariant-theory method.* To carry it out,

I first compute in § 10 the explicit values of t and W. I then

give in §§ 11, 12 the prepared equations on which f, on the one

hand, on the other an arbitrary linear combination of W and

t W, depends, equations which can then at once be changed

into resolvents of the icosahedral equation. The first of these

equations is also especially remarkable, because it has already

occurred (certainly on quite different assumptions) in the earliest

researches of Brioschi
-f-
on the solution of equations of the fifth

degree, as we shall have to describe more in detail later on.

The other will play an important role in our theory of the prin-

cipal equation of the fifth degree, which we shall develop in

Chapter II. of the following Part, and may therefore bo here

at once described as the canonical resolveni-l In § 13 I then

explain, further, how these new resolvents of the fifth degree

are connected with the resolvent of the r’s (which was furnished

by the function-theory method), and finally determine (in § 14)

for it the value of the particular product of differences, which,

as we know, must be rational in Z,

§ 9. The Resolvent of the r's.

To compute the resolvent of the 7’’s (15), wo first of all split

up F(r) into numerator and denominator, and take the par-

ticular value into consideration, and therefore write,

instead of (15):

(17) </>(r) : ^P{r) : x{r)^Z:Z-^l : 1,

'

* I gave this, in the form here used, first in Bd. xii of the Math. Ann.

(1877), p. 617, &c.

t See ** Annali di Matematica,” Ser. I, t. i, 1858.

X I first communicated the canonical resolvent, in a somewhat less simple

form, however, in Bd. xii of the Annalen, p. 525. It is also implicitly the

foundation of the parallel investigations of Gordan, which we shall describe

in detail in the following Part (see in particular Bd. xiii of the Annalen,

“Ueber die Auflosung der Gleichungen 6 Grades,” 1878).
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where will be integral functions of the fifth degree.

Now combining the original icosahedral equation :

IPij') :
- :

1728/S(^) = Z: : 1,

with this, we remark that 0= 0, -0 = 0, = 0, give resi)ectively

those values of r which are inserted for the 20, 30, and 12

points of jy=0, ^"=0, and /=0. The consideration of the

figure gives us accordingly certain theorems concerning the

linear factors of 0, 0*, x-

It is clear, in the first place, that the aggregate of the points

/=0 will be permuted amongst themselves for the 12 rotations

which leave r unaltered for the 12 rotations of the cor-

responding tetrahedral group). Therefore r will assume the

same value for all points of /= 0. Hence ^(?*) is necessarily the

fifth imrer of a linear expression. Wo consider further the 30

points jr= 0. Amongst these are found, above all, the 6 sum-

mits of the octahedron belonging to the tetrahedral group

(which we just now denoted by t). The remaining 24 points

are divided (as is evident on a model) in virtue of the tetra-

hedral rotations into twice 12 associated ones. We henec

conclude that y[r(r) contains one simply linear factor^ and two

others counted twice. As regards these multiplicities, let us

remark that 0(^’)= 0, corresponding to the term T\z) of the

icosahedral equation, must represent the aggregate of points

under consideration, counted twice. The linear factor, however,

which vanishes at the 6 octahedral summits, will be of itself

twice equal to zero
;

it need therefore be only counted once as

contained in 0(r). On the other hand, the two other linear

factors, on the same grounds, vanishing as they do in sets of 12

different points, and therefore only once vanishing, must occur in

0 counted twice. Tliis agrees with the fact that the one linear

factor presenting itself in ^(r) is to be taken quintuply. We
consider, finally, the points 0(r)= O or Among them
are found, as we know beforehand, the 8 summits of the cube

W appertaining to the tetrahedral group. These distribute

themselves in virtue of the tetrahedral group into twice 4 co-

ordinated points, of which each remains fixed for 3 tetrahedral

rotations. We have, in addition to these, 12 more points of

ifssO, which in respect to the 12 tetrahedral rotations form a

single group. Hence we conclude theut (l){r) possesses only 3
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different linear factorSy of which the two which correspond to

1V=0 occur simply
y
while the third occin's as a cube.

Summing up, we have reached a result which expresses

itself in the replacing of formulae (17) by the following:

(18) :c'(r- 6
) +

understanding by a, /?, 7, . . c, c/ c/' constants which are still

unknown.

The determination of these constants is a problem which

is only determinate when we have previously defined r in an

unambiguous manner. Let r be one of the triply infinite

number of rational functions of the twelfth degree, which

remain unaltered for the rotations of the tetrahedral group.

We will now put, in particular, understanding by t

(as above) the octahedral form appertaining to the tetrahedral

group. Here t should be so chosen that, when arranged in

powers of z^y it begins with the term -^-z^ and has altogether

real coefficients.* Then the first result is that, in (18), c'

{r^-rjY is equal to C (since it is only to vanish for r= oo), and

therefore c is to be put = c' while S vanishes. We have further

that G is to be taken = — 1728c. For
jy

in consequence of

our convention, reduces itself, for a very large value of to

- as a first approximation, while Z (in virtue of the icosa-

^ 5

hedral equation is to be replaced by follows

that all the coefficients in (18) will be real. We have therefore

now so simp)lified formula (18) that we can write

:

Z:Z-l:l=(r-a)3 (r^^/Jr + y)

(19) +
: -1728,

understanding try ay fl, 7,
6

, f constants.

* Both these conditions can be satisfied, as a glance at the figure shows.

For on the one hand, each of the 6 octahedra occurring in connection with

the icosahedron contains a term with Zj* because none has a summit at Z2=0y

and, on the other hand, amongst these octahedra is found one which has

the meridian of real numbers for its circle of symmetry.
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Now a, 7, €, f must in any case, in correspondence with

this formula, be so determined that the following relation is

identically true

:

(20) (r - af (r2 - /?r -f y) + 1728 = r{r^ - cr+

On treating this identity hy aijpropriate means, v:e recognise that,

with its help, a, P, 7, e, f are fully determined. Namely, we
have first, on putting in (20) r=0

:

a^y = -f- 1728.

Then, on differentiating (20) with respect to r, we find further:

{r-af (5r2-(2a+4^) r+(a^+ 3y))

= (/‘^— cr -f 0 (5r‘^— Ser -f f),

or, since (?'^ — er -1- and (r— a)^ are necessarily prime to one
another

:

5c -2a + 4/?, 10a -3c,

5f=a/?+3y, 5a2 = f,

therefore (by eliminating €, f)

:

11a — 3^, 64a2 — 9y,

and by combination with the relation first found

;

a5-3^

But now a is to be real. Thus we have a= 3, and hence

J3=ll, 7 = 64, € == 10, g’= 45. The resolvent of the r runs therefore

simply thus

:

Z:Z-1 : l = (r~3)^ (r2-llr + 64)

(21) : r (r^— IO7’ + 45)-

: -1728.

§ 10. Computation of the Forms t and TV.

We now give a supplementary computation of the forms

t and JF, whereby, on the one hand, we attain to an explicit

exposition of the connection between the quantity r, used in

the preceding paragraph, and the — of the icosahedral equa-

tion, and, on the other hand, obtain the necessary foundation
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for the invariant-theory method for the construction of

resolvents.

We remarked in § 12 of the first chapter, that to that

icosahedral group which we have here to consider belong the

rotations :

.

T, U, TU,

to which we then made to correspond, in § 7 of the second

chapter, the substitutions

:

We compute, in a homogeneous form, for the pairs of points

which remain fixed for these substitutions the following equa-

tions :

Zl®- 2(£ + «*) 2
i«2
- = 0.

Bid now the octahedron t icill be constructed vnth just these 3 pairs

of points. On further reflecting that the form t must contain

the term 4 z^, we have, accordingly, for the latter

;

^"

2) = {h^ +
"
2*) • {^i

- 2(«+ - h^)

(22) . - 2( £2 H- £®)-iZ2 - zf)

=
-i-

— ^^Z-^Z.^ — ^Z^Z^^ 4- z,^.

If we now wish to compute the corresponding IF, this can

be done, according to our earlier developments, on establishing

the Hessian form of z^. We may further agree, as it is

convenient for our later calculation to do, that W{z^y is to

contain the term --z^. We have thus:

(23)
W{z,,

and we have thus already achieved the first object of the present

paragraph.
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We now subject t and W to the operations

:

Thus arise, respectively, those five values which always come

under consideration simultaneously in the case of our equations

of the fifth degree, and which we will call W^, We find:

(24)

(25)
2.2
)= --€''''Zj*+ r’‘'2,''2^-7 <2‘'Zj%2_7 + ^ £'’•'2, =>2/

-cV/-

Here we will inquire expressly how the five ^^’s or are

permuted under the 120 liomogeneoiis icosahedral substitutions.

This, however, is derived already from the statement which w^e

have made in § 8 of the first chapter concerning the correspond-

ing geometrical figures
;
but it seems useful to connect the rule

in question explicitly with our present formula). We have

generated the 120 homogeneous icosahedral substitutions from

the following formulaa by repetition and combination

:

^ z.y — dbc%2»

T-. ± +

± V-'5
• 2/ =+(«*- «!+(«-

Introducing now these values of Zg', instead of c'g, in the

forms ty (or the Wy), new forms t'y arise, whose connection with

the original ^„’s is given, after a little calculation, by:

(26)
iS: ty'==ty^l

I 2 ; /q = ^1 ~ ^2 > ^2 ~ ^3 ~ ^
4 » ^4

~

Here, in the formula for Sy the indices are taken with respect

to the modulus 5.

§ 11. The Resolvent of the uh.

We next compute the equation of the fifth degree which

our satisfy. If we write, in correspondence with the

formula (16):

-f at^+ ht^ -f- ct^-\-dt-\-e — 0

)

a, by Cy . . , will be respectively of the 6th, 12th, 18th, . . .

degrees. Now, they are at the same time to be integral func-

H
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tiona of /, Uy 1\ Hence a and c must in any case vanish,

while S, d, e will be respectively proportional to/,/^, T. Our

equation of the fifth degree will therefore have the following

form

:

+ . t+iJ.T=Oy

where /c, X, are numerical factors. To determine them, we

either introduce the value of t (22) and the values of /, jET, T,

as we exhibited them above, into this equation, arrange them

in the order . . . and require that the three highest

terms which do not vanish identically shall bo reduced to zero

by appropriate values of X, /x
;

or, again, we determine, in

the appropriate symmetric functions of the ^,,’s (24), the highest

term which does not vanish in each case, and compare this with

the highest term in /, /^, T, In both cases we get

:

K = — 10, X= 45, /x= — 1 ;

and our equation of the fifth degree thus runs as follows :*

(27) - 10/. + 45/2

In order now to pass to a resolvent of the icosahedral equa-

tion, we put, say,

/«oN 12/2.^
(28)

(where now u depends on ^ alone). Thus we have, by a simple
h

substitution :

(29) 48w'> ( 1 - Z)2 - 40# ( 1 - Z) + 1 5w - 4 = 0.

I shall henceforward denote this equation as the resolvent of

the u^s.

§ 12. The Canonical Resolvent of the F\s.

In our later researches on equations of the fifth degree, those

equations in which the fourth and the third power of the

unknown are wanting simultaneously will play a particularly

important role. The equation of the fifth degree, which our

IF^’s satisfy, evidently belongs to them. For we have

= inasmuch as there are no icosahedral forms of

This is just that equation which, as has been already explained, occurs

in the early works of Brioschi,
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degree 8 or 16. In just the same way the equation of the fifth

degree belongs to them, which we can establish for the next

highest tetrahedral form, t . W, For we have again identically

(and on the same grounds): X S (tylFy^ — O. But

S ( Wy) .
(ty Wy) wlll also, 111 vlrtue of the same considerations,

be identically zero. Hmc(\ generally, to our cquatioufi of the

fifth degree those ones 'will belong whose roots arc linear com--

binations of the JF^’s and the tyWyS with eonstant eocjfflvients

:

(30) n = 0-. Wy+T . tyWy,

We accordingly set ourselves the task of calculating out, for

any values of a, t ,
the corresponding ec{nation of the fifth

degree. Inasmuch as the details of the calculation offer

nothing of special interest, communicate the result imme-

diately. We find:

+ 5 F2(8/^ 0-3 + r . erV -f 72/’ . o-t- +fT . r’)

(31) + 5 r( -/// . (T^ -f 1 + 7/r . trr’ + . t *)

4- {IP . - WIP . crV“+ 45/^7y2 .
0-^.4 ^ ^ ^ 0.

In order to construct herefrom a resolvent of the icosahedral

equation, we have but to recur to the formula (28), and put

instead :

(32)

Then we can write formula (30) as follows

:

(33) Yy —m . . UyVy,

, . , cr.H t,HT
where m is put = «

=-Y^y •

On introducing into (31) the values of o-, r, resulting herefrom,

we obtain

:

. r®+ 5 ( 8ot®+ 1 2w2«+

(34) +16r (-4„.< +52!j^'-‘+ :

3w‘ \

-zy)4.(1 -Z)

-t- o
(\-zy (\-zf )

This is that resolvent of the fifth degree of the icosahedral

equation which we shall later on refer to as the canonical

resolvent.
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§ 13. Connection of the New Resolvent with the
Resolvent of the r\s.

We have now to exhibit the connection of our new resolvent

with the resolvent of the r’s (§ 10).

First, as regards the agreement of the function-theory and

invariant-theory methods, we write the equation (27), say, as

follows

:

(35) r=j?(^‘-10/^H45/^);

now squaring, dividing both sides by /®, and finally writing r

again we have :

-1728 (Z-l)-r(r2-10r-{-45)^

ail equation which, in fact, is identical with (21).

We shall have further to express

u~
T " and V

nw.f
' H '

rationally in terms of r.

As regards we effect this at once on introducing for T
the value (35).

We thus find

:

(36)
12

r2-10r+ 45’

To exhibit v similarly, let us recall that, according to the de-

velopments of § 10, the points ^=0 are at the same time

J£
represented by 7’— 3 = 0. Therefore ^ will be identical with

— save as to a factor. The comparison of any term in the

development in terms of z^y shows that this factor =-|-l.

Hence we have without further proof :

(37) 3’

Finally, introducing the values of (36), (37), in (33), we have:

(
38

)

1 2m {r— 3) + 1 44w

(r-3) (r2-10r+45)‘
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We should, of course, be now able to compute also the resolvent

of the ^^^s and the canonical resolvent, on eliminating r between

(21) and (36) or (38) *
.

§ 14. On the Products of Differences for the us
AND THE Ts,

We now further calculate, also in view of tlieir later appli-

cations, the products of differences of the vt's and the P^s

which, as we know, are rational in Z, We consider, say, first

the following product

:

JJ[
V -C V

where the symbol under the product-sign is to denote that only

those 10 factors are to be multiplied out for which v ib <v'

(while p and v' are to be simultaneously susceptible of the values

0, 1, 2, 3, 4). This product is known to be equal to the deter-

minant :

1 /« • •
•

I

I f, f,*
I

1 / f ^
1 ^4 . . . ^4 I

We now multiply this last expression, according to the rules of

multiplication of determinants, by

:

11111
1 € c2

1

1 . . .

Thus arises a new determinant with real and integral numerical

coejfficients throughout

:

This is the manner in which Herr Kiepert has derived the canonical re-

solvent :
“ Auflosung der Gleichungen funftcu Grades ’’ (Gottinger Naohrichten

of the 6th of July 1878 ; BorchardFs Journal, Bd. 79).
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2-'' s^-
S"“- • %

• • •

S'"'-
• •

This is of the 60th degree in z.^; it will therefore (as an

icosahedral form) be necessarily equal to a linear combina-

tion of and /®. On aiiually vakvlatvng the terms which

contain z^ and we i^erify that this

Hence our original product of differences

:

But now we have :

,
_T .Uy

" up'

Hence the product of the differences of the u's will be :

(39)

V -C V

25 75
144 •(Z-l)->‘

In a similar manner I compute the product of differences of

the y’s. Starting first from (30), we find

:

J^( F,-r,/)= -25 75. +2*. 5 .l.pT.o-H

yJ? + 52
. /(26

.

3*

.

/5-H®)(r8T2+ 2« . 3» . 5 ./«r. o-V

+ 2.5. p(2<‘ .3*.7.p-3l. - r(2« . 3^ 7
.
/^ + 1 1

.

-2. 32
. 5./®(2«. 3«.7./*-13 . H3)(rM-2 .

. fT{2\3* .f-IPyr'
- 3*

. 5
.
/‘(26 .

3®
. 7 ./5- 1 1 . IPy-P- 3® . 5 ./®r(2* .

3‘
.
/®-

-(2». 36 . 11 ./‘»-3*. 7./®H®+H»)t1<'},

and then, passing to (33), wo have the final result

:
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J~[^Yy- Ty'

)

=• 2® • 3* (1-Z) »«’»+ 2»
.
3^ . 5 . 7 . m»M

. 39 .
59 (3-Z) .

3* . 5 .

l-if

29 .
39

. 5 (3 . 7-31 . 25

.

39 (3 .7j- 2^ 1K ;^) nr'n^

(40)
_29

.

39
.

6

(3 . 7-13 . Z) mV+2^ . . 5 (3-2Z) mV
(i-Zf

- U_- ’i*'^”**
+ 39 5 (3 - 29_. ;;) >» ««

_(3^. ll_-39 . 7 . ;?+ 2« .
39

. Z^ «>« \
29

.
(l-^)« "

J
'

§ 15. The Simplest Resolvent of tjte Sixth Degree.

At the conclusion of this chapter, and with the special

object of forming later on a simple connection between our own
developments and the earlier investigations of other mathe-

maticians, let us further consider the simj)lest resolvent of the

sixth degree of the icosahedral equation, and, in fact, with this

object, we will at once employ the invariant-theory method.*

Among the six dihedral groups containing each 10 rota-

tions, which here come under consideration, let us select that

one whose principal axis joins the two points :;= 0, oo. The

lowest form, which remains completely unaltered for the corre-

sponding homogeneous substitutions, is, as we know before-

hand, the sciitarc of We shall therefore first compute the

equation of the sixth degree which this square, or rather the

quantity

:

(41) =

satisfies, where the numerical factor 5 has been advisedly

attached, and the index oo affixed to the in order to have

the symbols ^„(i/= 0, 1, 2, 3, 4 [mod. 5]) available for the cor-

responding expressions which appertain to the remaining 5

icosahedral diagonals. On applying to the homogeneous

icosahedral substitutions which correspond to we find for

these <^^*s

:

(42) </>„ = if7.;^+ "Ihh -

Compare Math. Annalen again, 13(1. xii, pp. 517, 518.
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Now let the equation of the sixth degree, which the

satisfy, be:

-f + d'c{>‘^ + e'<t>+f = 0,

then a\ h\ c', . . . are icosahedral forms of the 4th, 8th, 12th,

. . . degrees respectively. Hence it follows at once that

a' — 1/= d'= 0, while c', /, /', must, apart from numerical

factors, coincide with /, //, and respectively. We determine

these factors in the well-known manner by returning to the

values of/, Hy and ^ in z^y Wc thus find with little trouble

the folluirbufj equation

:

(43) <//’ - 10/ . H . r/> + ^ 0.

Let us now pay attention for a moment to the group

of this equation. This will be given, as follows from our

earlier developments, by those 60 permutations of the (/>’s which

correspond to the 120 homogeneous icosahedral substitutions

(where we must not forget that wo have adjoined 6 once for

all). Now the latter are all composed of the substitutions

S and Ty which we again exhibited in § 10. Clearly the

remains unaltered for Sy while is transformed into

We can compress this into the single formula:

/ v-f 1 (mod. 5),

inasmuch as for v= oo the v so determined will also be oo. On
the other hand, for T,

<f>^
will be interchanged with

with
<f>^y (f),^

with <p.^y which will be repeated by means of the

single formula

:

v'=— - (mod. 5).

In the two formulse so obtained, all formulaj :

are now comprehended, according to known theorems of the

theory of numbers, where a, j, S, are integral numbers which

satisfy the congruence (a8— ^7)= 1 (mod. 5). In fact, the

number of these formulas is equal to 60, so long as we always

count as only one all such systems of values a, 7, 8, as are'

identical for the modulus 5, or are brought to identity by a

uniform change of sign. Therefore

:
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The group of our equation of the sixth degree ivill he constructed

with those 60 permutations of the roots which are provided hy

the variousformulm

:

(44) v'= (mod. 6).

But this is, according to the researches of Galois, exactly that

group which belongs to the modular equation of the sixth

order, for a transformation of the fifth degree of elliptic func-

tions. And, in fact, Herr Kronecker, who started from elliptic

functions, while following up incidental statements* of Jacobi’s,

had long before deduced exactly the same equation (43), though,

of course, with a different notation.* We shall return again,

and in some detail, to this circumstance.

In order now to transform (43) into a resolvent of the

icosahedral equation, let us put, say.

(45)

tee thus obtain by mere substitution

:

(46)

We will amplify this result by deriving from it a second

resolvent, whose root is a rational function of the 10th degree

of z, which does not alter for the 10 substitutions of the

dihedral group under consideration. Such a function is, for

example

:

(47) ^ =

since, namely, the numerator and denominator of this expres-

sion have in common the factor quadratic in z^. In

order to construct the corresponding resolvent, let us write

(43) in the following manner

;

(48)
„ <^«- 10/.^» + 5/2—^

,

then cube, and divide both sides by 1728/®.

(^2- log +5)3

-17281

We have thus

:

* See the passages cited in the first and third chapters of the following

Part, and compare, on the other hand, § 8 of the chapter following this.
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or, also (if we rearrange the value of (i^— 1) properly):

Z^l : 1 = (^
2 _|o^+ 5)2

(49) : (^-4^-l)2 22^+125)
: -1728f

We should also have been able to derive this equation from

function-theory considerations, without any use of explicit

formulas.*

I further give, in conclusion, the formulas by means of

which f(45) is expressed rationally in terms of our present

According to (48) :

10/.
^ 12/2

"^
12/2

and therefore

:

(50)
=

§ 16. Concluding Remarks.

The developments of the last paragraphs have manifold

relations with the applications which are to be made of them in

the part here following.

I may point out at once that the considerations of the

present chapter will be of the weightiest importance for our

further process of thought. Let me state this more precisely.

We have already seen, in the third chapter of the present

Part, that we can consider the solution of our fundamental

equation, from a function-theory point of view, as a generalisa-

tion of the elementary problem
;

to extract the root from a

magnitude Z, The algebraical reflexions of the present chapter

have then shown us that the irrationalities which are intro-

duced by the equations of the dihedron, tetrahedron, and

octahedron can be computed by repeated extractions of roots.

The icosahedral irrationality, on the contrary, has maintained its

independcTvt significance. Hence an extension of the ordinary

theory of equations seems to be indicated. In the latter we are

generally restricted to the investigation of those problems which

* Compare Mathematische Annalen, xir, p. 143 (formula (19) of that

page).
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admit of solution by repeated extraction of roots. Wc will now

adjoinf
as a further possible operation y the solution of the icosa-

hcdral eqiiationy and ash whether
y
among the problems which

do not admit of solution by mere extraction of roots
y
there may

not be some for which this can be effected by the help of the icosa^

hedral irrationality^

In this sense our second Part now deals with the general

problem of the solution of equations of the fifth degree. The

attempt to accomplish this solution with the help of the icosa-

hedral equation appears the more natural, inasmuch as the

group of the equations of the fifth degree, after adjunction of

the square root of the discriminant, is simply isomorphic

with the group of the icosahedral equation, and as we have, in

the resolvents of the fifth degree of the icosahedral equation

(previously established), just so many special equations of the

fifth degree whose relation to the icosahedral equation is a

priori established.
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CHAPTER V

GENERAL THEOREMS AND SURVEY OF THE
SUBJECT

§ 1. Estimation of our Process of Thought so far, and
Generalisations thereof.

Having now, in the third and fourth chapters, studied the

essential properties of our fundamental problem, we will inquire

where lies the proximate cause of the remarkable simplicity

which has manifested itself therein all along, Abqut this, I

believe, there can be no doubt, viz., it is the 2)r(yperty of oicr

2‘>rohlcms that from one of their solntiom the others always jproeced

hy means of linear suhf itniions whieh are a priori hioum. The

geometrical apparatus, from which we started in the develop-

ments of the first and second chapters, has served to lead up to

our problems, and to illustrate their primary properties
;
now it-

has done us this service, we can henceforward leave it on one

side.* Having grasped this notion, we shall naturally ask if

there may not exist other equations, or systems of equations,

also, which agree in that most essential point with our funda-

mental problem.

We therefore first seek, so far as it is possible, for new finite

groups of linear substitutions of a variable z (or two homo-
geneous variables z^). But we will show immediately (§2)
that all such groups return to the ones already known to us.

If we, therefore, conceive our statement of the question in the

* This is only meant to apply ad hoc^ and for the developments of the second

Part here following. For carrying out more thoroughly the generalisations

proposed in the text, an illustrative notation, at all events when we have to deal

with transcendental functions, is for the time quite indispensable, as also in

§ 6 of the present chapter, where we involuntarily, so to say, return to geo-

metrical explanations.



GENERAL THEOREMS, ETC. 125

obvious manner explained,the equations and systems of equations

hitherto treated of are the only ones of their kind. This is a

result which is calculated to attach a certain absolute value

to our previous considerations, which, on account of their induc-

tive form, at first appear to aim at no definite object. In fact,

we see that our fundamental equations occur as a specially

remarkable circumscribed group among numerous mathematical

investigations of the last few years. In regard to this, I shall

effect in § 3 following, the simple developments by means of

which we show that, with the help of our fundamental equa-

tions, all linear homogenrous differential equations of the second

order vnth rational coejffieients^ irldch have entirely alyehraical

integrals, can be established with little trouble. I refer, how-

ever, for the analogous significance of our fundamental equa-

tions for the linear homogeneous differential equations of the

order with rational coefficients, to the memoir of Halphcn *

already quoted
;
further, as concerns the role which our funda-

mental equations play in the theory of elliptic modular func-

tions, and similarly in the investigation, by the theory of

numbers, of binary quadratic forms, to my own investigations f
and those of Herr Gierster.X Meanwhile we can generalise our

statement of the question in a twofold sense.

In the first place, we can, instead of the variables z.^, take

into consideration a larger nnmher of homogeneous variables,

• Zn, and inquire for the finite groups of linear substi-

tutions which may exist in their case. I will presently (in

§§ 4, 5) treat this more fully, and will here only observe that, as

a consequence of the views thus unfolding themselves, the

developments of the second Part here following appear as a

single contribution to a general theory, which embraces the

whole theory of equations.

Our second generalisation proceeds in another direction:

we %uill retain the one variable c;=”, but, on the other hand, take
'*2

into consideration infinite groups of Umar substitutions. Here

* “ Sur la reduction des equations diff^rentielles lineaires aux formes intd-

grables.** M6moires prdsentes, Ac., xxviii, 1 (1880-83).

t Cf. especially Bd. xiv of the Math. Ann., pp. 148-160 (1878).

t
‘
* Ueber Relationen zwischen Classenzahlen binarer quadratisoher Formen

von negativer Determinante,** Erste Note (Gbttingcr Nachrichten of June 4,

1879, or Math. Ann., Bd. xvii, p. 71, Ac.).
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that vast region opens out, sinfjlc’-valvcd iransccmlcni fv^iciims,

with linear tramformaiions into themselves, to which general

attention has recently been drawn from various quarters, but

particularly by M, PoincarL’^ It is, of course, impossible for

me to enter more minutely into the questions connected with

this matter in the following paragraphs. My exposition is

only to carry us so far that the position of the simplest class of

functions among the others, viz., the elliptic modular functions,

may bo clearly conceived. To this is attached the proof (§§ 7, 8)

that the equations of the tetrahedron, octahedron, and icosa-

hedron admit of solution by elliptic modular functions in a

similar manner to that in which, say, a binomial equation is

solved by logarithms, a cubic equation (and also the general

equation of the dihedron) by trigonometric functions
;
and this

proof I wished to bring forward in its general outline, be-

cause it marks that point on which in the theory of equations,

and particularly of equations of the fifth degree, the interest

of mathematicians has been continuously concentrated. We
can, evidently, also combine the generalisations here suggested

;

we can study transcendental functions of several variables with

an infinite number of linear transformations into themselves.f

But more important for us here are, I think, the considerations

which I develop in § 9, in consequence of which absolutely

no material difference exists between the two kinds of generali-

sation. Hence the perspective to which the consideration in

§ 5 of the finite groups has already led us will be, so to say,

extended to an infinite distance.

§ 2. Determination of all Finite Groups of Linear
Substitutions of a Variable.

The problem of determining all possible finite groups of linear

substitutions of a variable has been dealt with in various ways.

Of. the numerous communications of Poincari in the “ Comptes Rendus de

PAcad^mie des Sciences,” as well as his memoirs in Bd. xix of the Math.
Annalen, and in Bd. i and ii of Acta Mathematica (1881-83). Moreover, my
essay in Bd. xxi of the Math. Ann. (1882) may also be consulted: “ Neue
Beitrage zur Riemann’schen Functionentheorie:” there, particularly, the

literature of the subject is noted and described in detail.

t The latest researches of M. Picard move in this direction ; cf, Comptes
Rendus, 1882-83, also Acta Mathematica, Bd, i and ii.
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With my primary geometrical method

*

is connected the analy-

tical method of Herr Gordan^^ then the general treatment by

M. C. Jordan, J by means of which he is in a position to solve

the corresponding question for the case of a larger number of

variables. I shall here use a method of consideration, based on

the function-theory, which I have already incidentally pointed

out. § This starts from the idea of taking into consideration at

once the equations, whose roots will be transformed into one

another by the substitutions of the group, whence it may
easily be sliown that these equations practically return to the

fundamental equations hitherto investigated. The process of

thought, on which M, Hali)hen has been lately engaged
||

for a

similar purpose, is not essentially different from the one here

given. Moreover, a determination of all finite groups of linear

substitutions of a variable is also implicitly contained in the

investigations of Herr Fuchs on algebi’aically integrable differ-

ential equations of the second order,ir investigations which we
have already more than once cited in Chapters II and III, and

to which we shall again pay regard in the following paragraph.

We may say that these works of Herr Fuchs differ from mine

in the fact that he brings forward the standpoint of the theory

of forms quite at the beginning, while I commence with

function-theory considerations.

Let

fo («)=*. 'f'l (•«). 'i'N-l (»)

be the N linear functions, which, equated to x\ represent a

finite group ofN linear substitutions of the variable x. Further,

let a, b, be any two quantities, so chosen that none of the ex-

pressions ylr (a) are equal to 6, or, what is the same thing, none

* “ Sitzungsberichte der Erlanger physikalisch-medicinischen Gesellschaft

of July 1874,” Math. Annalen, Bd. ix (1876).

t
** Ueber endlicbe Gruppen linearer Substitiitionen einer Veninderlichen,”

Math. Annalen, Bd. xii (1877).

X “ M<$ni. sur les Equations diif, lin, h. intdgrale algdbrique,” Borchardt’s

Journal, Bd. 84 (1878) ;
also “Sur la ddterm.des gronpes d’ordre fini contenus

dans le groupe lindaire,” Atti della Reale Aocad. di Napoli (1880).

§ Math. Annalen, Bd. xiv, pp. 149-160 (1878).

II
Vide p. 125 (footnote).

if Gdttinger Nachrichten of August 1875 ;
Borchardt’s Journal, Bd. 81, 85

(1876-77).
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of the expressions (Z>) are equal to a. We then form the

equation

:

n \
(</'o(.>^)-a) (i/'i (a;)-a) (fjy-i (•«) - «) _ „

Then we have evidently an equation of the degree, which

remains unaltered for the N substitutions of our group, and

whose N roots, corresponding to an arbitrary value of Xy there-

fore, in every case, proceed from one of themselves by our N
substitutions. In fact, if we substitute in (1), instead of Xy any

{;x)y the consequence is simply, since the -^’s by hypothesis

form a group, that the factors in the numerator, and likewise

the factors in the denominator of the left side of (1), are per-

muted with one another in a certain manner.

Our assertion will now bo this; that ire shall he. able to

traiisfonii the equation (1) into one of the fandanicntal equations

hitherto eonsUlered hy ns by simply substituting for x and X
appropriate Umar functions of x and X

:

ax-\-p y_aX-^b

To prove this, we first ask for what values ofX the equation (1

)

may possess multiple roots. It is certain that if, for one value

of Xy one set of v aj-roots become identical, then all the corre--

s:ponding x-roots coincide in sets of v. This follows from the

consideration of the substitutions yjry just as we have proved

the same theorem in the first chapter with respect to the groups

of rotations, and those points on the sphere which remain fixed

for certain rotations. We will now assume that to the values

X=^X^y X^y . . . only i/^-tuple, i/g-tuple . . . roots correspond

in the sense explained. According to the explanations of § 4

of our third chapter, we have then for the functional deter-

minant of the (2iV^— 2)^*^ degree, which is computed from the

numerator and denominator of the left side of (1) [after we
have turned both into integral functions of x by multiplication

N
by the denominators of the

^
roots of multiplicity — 1),

N— roots of multiplicity (i/g— l), &c. Hence:
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or otherwise written

:

Our method will now first consist in considcrincj this equation

as a diopliantinc equation for tlic hvtcefval numbers i/^, and
seeking all the systems of solution thereof

This latter is done in an extremely simple manner. We
first agree that the number of the i^^’s cannot be less than 2,

nor greater than 3 (assuming, of course, N to be > 1).

Namely, if the number of the i//s were equal to 1, the left

side of (3) would be <1, while the right side for N> I is

greater than or equal to 1. But if the number of the ViS were

"^4, the left side of (2) would be "^2, because each element

^1 — of the sum is itself and this would be no less a

contradiction.

We now first take the number of the Vi^ equal to 2, and

therefore simply write instead of (2)

or

JL ^ 2

Now it is self-evident that none of the z//s can be >iV’; there-

fore • We hence conclude that in the above case ~ and ~
v—JV 1/2

must both be equal to i . Hence ire have :

(3) Vi=V2= N,

yjhere N is arbitrary ; and this is onr first system of solution.

Let us further take the number of the equal to 3, and

therefore put, instead of (2), the equation

:

(^)

Then I say, in the first place : at least one of the v^s must be equal

to 2, Namely, if each of the three were vi^Sj the left-hand side

1
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of (4) would be ^1, wliich is impossible. We therefore put,

say, i/j = 2. For the remainder

:

It is now possible that a second p, say p^, is equal to 2.

then find

:

1 2

N‘

We

Thus ire have our second system of solufio/i, which ire will denote

as follows, iindcrstatuliny by n an arbitrary number

:

(5) N^2n, vi = 2, v2 = 2,

But if neither of the two numbers p^, is equal to 2, at least

one of them must be equal to 3. For otherwise — -f-~ would be

whereas it is to be >i-. Accordingly, let us put p^^3.

There remains

:

1 2

‘'s
6 * iv’

Therefore anyhow 1/3 <6. On the other hand, we can choose

1^3= 3, 4, 5, according as we wish. We get correspondingly

W=12, 24, 60, and then in each case our conditions are all

satisfied. There are therefore three, more systems of solution,

which are embraced in the foUowiny table:

C W=12, Vi = 2, v2=-3, v3 = 3;

(6) {
W=24, 1.1 = 2, v2 = 3, v3 = 4;

( ^=60, Vi = 2, v
2
= 3, V3=r5.

The five different systems of solution so found correspond

exactly, as we see at once, to our five fundamental equations

:

the binomial equation, the equations of the dihedron, tetra-

hedron, octahedron, and icosahedron. We will now show that,

according to the system of solution (3), or (5), or (6), which we

like to attribute to our diophantim equation, we can in fowt in

each case transform our equation (1), in the way pi'crposed, into the

corresponding fundamental equation.
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Let us take the case (3 ) to start with. Instead of X wo
may introduce in it

:

X—X2

We have tlien for Z=0 and for Z= 00 an W-fold root j!. Our
equation (1 ) therefore admits of being written as follows

:

and here we have only to put

:

in order to have before us the Innomial ffiaation:

In the other cases we will choose

:

_v X,-X,
^ \r -tr * v

so that for Z= 0 merely i/g-tuple, for Z= 00 merely 1/3-tuple, for

ir=l merely i/^-tuple, double roots enter. Denoting by

approximate integral functions of our equation (1)

takes then the following form

:

Z:Z-l:l= (.lO : (./•) :
(r),

where we must suppose for systems of

solution introduced. We now combine with this the corre-

sponding fundamental equation to which we had previously

given the form

:

Z : Z- 1 : 1 = (.) : (.) : (^)*

Our assertion will be proved if we show that, in consequence of

these tiro equations, z is a linear function of :e

:

ax + li

To this end we recall the differential equation of the third

order, which we previously established for ^ as a function of Z'

(see § 8 of Chapter III)

:

r.-i _ Vo^ — 1 .
i/./

Hz o.. 2 / V2 2vf{Z-lf^ 2v^KZ»'^
‘

2 {Z-ljZ
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On going through the steps of the proof which we used in the

establishment of this equation, we recognise that x in each com

satisfies the same differential cfj)tation with respect to Z. Now
all solutions of such a differential equation are, as we know,

linear functions of any particular solution. Hence z is also a

linear function of a*, qxd.

We will sum up the result thus obtained more concisely.

Our object is to seek for all finite groups of linear substitutions

:

Ur). = 0
,

1
,

We now recognise that wo obtain all of them by choosing as

our starting-point the finite groups which we collected in § 7

of the second chapter, and then introducing in the formula)

there given, instead of an arbitrary x, by means of the

equation: = whereupon, of course, ?! will have to be

replaced in a corresponding manner by d =

§ 3. Algebraically Integrable Linear Homogeneous
Differential Equations of the Second Order.

Interrupting our general course of ideas, let us now concern

ourselves, as we proposed in § 1, with the problem : to present

all linear homorjeiuons differential equations of the secoiul order

xoith rational coefikients

:

(7) + =

which possess altoe/ethcr aUjehraical solidions. In fact, this pro-

blem is solved on the basis of those developments, which we
have already brought forward in the third chapter, respecting

linear differential equations of the third order, and this so

simply that it would seem wrong to pass it over here.

We first replace the differential equation (7), as we did in

the third chapter (§ 7), by that differential equation of the third

order

:

(8)
= =

which is satisfied by the quotient ri of two arbitrary solutions
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Vv 0)* Evidently rj is algebraical, if and are so.

Let us now recall the formulas (Chapter III, Equation 33));

(
9
) Vi = V-V2, =

then we see that we can reverse then, and only then, when

finlZ is the logarithm of an algebraic function.* TKi^i is a first

comlition to he laid tlic cocfiicicnt p. Supx^osing this fulfilled

in what follows, we can altogether disregard the equations (7),

and now have furtlier the problem, to establish all algebraically

integrablo equations (8), where r{Z) denotes an unknown,^ but

in any case rationed, function. We then treat this problem

by first presenting all algebraical intcfjral equations which, on

differentiation, lead to differential equations of the third

order of the kind we seek
;
the establishment of the differ-

ential equations themselves will then follow from this very

readily.

The function 'q{Z), as an algebraical function of Z, will pos-

sess a finite number of branch-points in the plane Z
;
we will

connect these by a network of barriers in such a way that the

plane Z acquires a simply connected boundary curve. In

the plane so partitioned we then construct, to begin with, a

primary function-branch of necessity everywhere single-

valued, which satisfies the differential equation (8). The most

general function-branch wliich satisfies (8) will, by the funda-

mental property of the differential expression [7;]z, be a linear

function of this Hence, as often as we carry across one

of these barriers, it experiences a linear substitution (of course,

only dependent on the barrier. We therefore obtain for our

a grou^) of linear substitutions, if we traverse all the possible

barriers in any kind of combination or repetition. Now we
require that r)^ should depend algebraically on Z, Hence the

number of the function-branches which arise from by cross-

ing the barriers, and thus also the number of the linear substi-

tutions which experiences, must be finite. We therefore

come back at once to the statement of the question given in

the preceding paragraph, and can express the result of it forth-

with in the following form

:

Since ^ is to be rational, we can equally well say that fpdZ is to be the

logarithm of a rational function.
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If 97q in to he ahjehraical in Z, there is a linear fanction z of

Vw (Ndrh either or one of the other ftnuhrmental functions

F *^2

e-jf -^rctndins unaltered irlun any harriers (f the Z-idane are

crossed.

This z is of course itself a solution of (8). On the other

hand, the expression which remains unaltered, since it is to be

an algebraical function of Z, must be a rational funot ion of Z.

Hence we have

:

If the equation (8) is to he alyehmiealhj inteifrahle, the inteyral

equation iuust^ irith a proper choice of the q^firt ieular solution z,

he of one of the fire fn'ins

:

( 10)

untierstandiny hy 11{Z) a rational function of Z.

We now derive conversely, from any one of the equations

(10), the value of [z]y^. To this end we write for a moment:

respectively
;
then by our previous investigations :

o ,\^2 V'

2
’

~

1 1
^—9

,•> t 2 V 2 ^ Ci / ry 1 \ ry2A2 , zf {Z^ -If" 2vf . Z;^ 2 (Z^ ~ 1)

respectively. Now we found, on the other hand, in § 6 of the

third cliapter the general formula

:

Mz [--k.+Kix-

On here introducing for Z^ its value U{Z\ we obtain the follow-

ing differential equations, which r] = z satisfies:

hlz
A"2-l
2iV2

.

V-i
1 1

Vo^-\ V* ^
.

These differential equations are evidently included under the

formulas (8), inasmuch as in them also a rational function of
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2^ occurs on the right-hand side. Hence vk conclude that the

rational fumtion R{z) introduced in the form nice (10) may he

absolutely any rational function^ and that, in this sense, the

equations (11), to vdiieh the equations (10) correspond as parti-

cular solutions, are the most general differential equations of

those we seek. Thus is the problem, whicli wo formulated at

the beginning of this paragraph, fully solved.*

§ 4. Finite Groups of Linear Surstitutions for a

Greater Number of Variaju.es.

Turning now to the first of the generalisations proposed in

§ 1, my intention is not to communicate f examples of finite

groups of linear substitutions for a greater number of variables,

or otherwise to enter into particulars with regard to these

groups. I am rather concerned just to explain, on general

lines, how fundamental problems admit of being formulated

corresponding to any such group.

Let our group be first written in the homogeneous form.

Then certain integral functions of the variables z^y z^, . . . Zn^i

(forms) will be given, which are not altered for the substitutions

of the group. We will seek to establish the eomplete system of

these forms, i,e,, those forms:

* After Herr Schwarz in the oft-quoted memoir in Bd. 75 of Borchardt’s

Journal (187*2) had inve.stigated for the differential equation of the hypergeo-

metrical spries all the cases which are algebraically integrablc, the question

of the most general algebraically integrable linear differential equation of

the second order with rational coefficients was atUicked by Herr Fuchs in the

essays just mentioned (1875-78). In connection with the first of his com-

munications I gave (Sitzber. der Erlanger Soc., June 1876 ; sec also Math.

Ann. Bd. xi) the simple result now deduced in the text. Cf, here also

Brioschi: “La th^orie des formes dans I’intt^gration des ^q. diff. lin. du
second ordre,” in Bd. xi of Math. Ann. (1876), also my second essay, “ Ueber

lineare Diff. gleichungen,” in Bd. xii of the same (1877). Further questions

also related to linear differential equations of the second order are dealt with

upon the same method by M. Picard (‘‘Sur certaines ^q. diff. lin.,’’ Comptes

Rendus de PAcad. des Sciences, t. 90 (1880). IIal})hen's researches on differen-

tial equations of a higher order have been just mentioned.

t For such examples see the already-mentioned works of G, Jordan, also

my essays in Mathcmatischc Annalen, Bd. iv, p. 346, &c., Bd. xv, j). 251, &c.

A special case will have to be dealt with in the third chapter of the following

part.
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by means of which all other entirely invariant forms admit of

being expressed as integral functions. Among them certain

identities must subsist which we compute collectively. We
suppose now the numerical values of the A”s given, in agree-

ment with these identities, but otherwise arbitrarily. Then we
have the foryn-problcm which corresponds to our group if

we attempt the calculation of the corresponding . . . Zn^^

from these numerical values. The form-problem has as many
solutions as the given group contains operations, and all these

systems of solution proceed from any one of themselves by
means of the operations of the group.

By the side of this form-theory conception that other pre-

sents itself which only takes into consideration the ratios of the

cJq, cjj, . . . and therefore works with (7^— 1) absolute vari-

ables Qxvdi fractional linear substitutions. Instead of the forms

F^, i^2, ... we shall now have to take into consideration certain

rationalfinictionsy . . . which are composed of the -f^^s

—

or of such forms as only change by a factor for the homogeneous

substitutions—as quotients of null dimensions, and which must

be so chosen that all other rational functions, which remain un-

altered, must bo composed rationally of them. In order, then,

to seek all the identities subsisting between these ^’s, let us

suppose the numerical values of the Z'h given, in agreement

with these identities, but otlierwise arbitrarily. We require to

compute from them the ratios of the 0’s. Then we have that

which I will generally designate as the equatioii’-systein belong-

ing to the group. The equation-system has, in relation to the

non-honiogeneous substitutions of the group, properties quite

similar to those which tlie form-problem has in relation to the

homogeneous.

Both problems—tlie form-problem and the equation-system

-—can then be assigned a place in the scheme of the Galois theory.

We might evidently say, making use of the general mode of

expression of § 6 in the preceding chapter, that both are their

own Galois resolvents. Moreover, it is evident that the solu-

tion of the form-problem carries with it that of the equation-

system, while the converse need not necessarily be the case.

We will not linger too long over such generalities. On the

other hand, we may convince ourselves that in a certain sense

the entire theory of equations, commonly so called, will be
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spanned by these enunciations. If we are concerned with the

solution of an equation of the degree f{o^) = 0, we can regard

it as being the same as if a form-problem for the n variables

iCj, . . .
{i.e.y the roots of the equation) were proposed

to us. The group of the corresponding linear substitutions will

be simply formed by those permutations of the ,//s which make
up the “ Galois group’’ of the equation; the forms F coincide

with the complete system of those integral functions of the ./j’s

which, in the sense of the Galois theory, figure as ‘‘rationally

known.” With these remarks, nothing, of course, is primarily

altered in the substance of the theory of equations. But the

theorems to be developed in it acquire a new arrangement.

Those appear as the simplest problems which relate to groups

of binary linear substitutions, i.e.y just those problems with

which we have been dealing in the past chapter. There follow,

further, the ternary problems, &c., &c.*

§ 5. Preliminahv Glance at the Theory of Equations

OF THE Fifth Degree, and Formulation of a

General Algebraical Problem.

The short remarks of the preceding paragraph suffice to

exhibit the developments of the second Part here following

under that aspect which I suggested in § 1 of the present

chapter. Our object will be, in our second Part, to reduce the

solution of the general equation of the fifth degree, after ad-

junction of the square root of tlie discriminant, to the solution

of the icosahedral equation. We liave here, in the equation of

the fifth degree, as a consequence of the conception just ex-

pounded, a form-problem with 5 variables, and a group of 60

linear substitutions, before us. On the other side we have, in

the icosahedral equation, an equation-synicm (if this expression is

allowed for the case of only one variable) also with a group of

60 substitutions, and this is a group which, as we know, is

simply isomorphic with the group of the given equation of the

* The conception thus formulated was founded essentially in niy essays in

Bd. iv of the Mathernatische Annalen (1871): “ Ueber eine geometrische

Reprasentation der Resolventcn algebraischer Gleichungen.’" See, too, the

memoir in Bd. xv of the same, to be presently mentioned.
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fifth degree. While dealing with this particular question

—

and this with geometrical reflexions which, under this form,

only find a place in this connection—we therefore obtain a

contribution to the general problem : to investigate thoroughly

how far it is 'puH^iible to rexlace form-prohlnns or equation-systems,

with resqyccticely isoworphic yroups, to one. another. By isomor-

phism we need not necessarily, of course, understand simple

isomorphism.

The formulation of this problem has a certain importance,

for we obtain thereby at the same time a general programme
for the further development of the theory of equations.

Among the form-problems and equation-systems with isomor-

phic groiq)s, we have already above described as the simplest

that which possesses the smallest number of variables. If,

therefore, any e(iuation is given, we will first investi-

gate what is the smallest number of variables with which we
can construct a group of linear substitutions which is isomor-

phic with the Galois group of Then we shall establish

the form-problem or the equation-system which appertains to

this group, and then seek to reduce the solution of /(,/;)= 0 to

this form-problem or equation-system, as the case may be.

The limits of the matter, within which I should like to keep

ill the present exposition, make it impossible for me to enter

more minutely into the aspect thus described. I will merely,

while considering equations of the fifth degree, show cursorily

how we can treat equations of the third and fourth degree in

an analogous sense, by combining the former with the dihedral

equation of the sixth degree, and the latter with the octahedral

equation (or, if the square root of the discriminant is adjoined,

with the tetrahedral equation). I would the more earnestly

commend the consideration here of an essay (in Bd. xv of the

Mathematische Annalen*) and the associated researches of

Herr Gordan.f There the principles under consideration are

so far developed that a satisfactory theory of the equations of

the seventh and eighth degrees with a Galois group of 168

permutations can be established, a theory which appears as a

* “ Ueber die Auflosung gewisser Gleichungen von siebenten und achten
Grade ” (1879).

t Sec especially “ Ueber Gleichungen siebenten Grades mit einer Gruppe
von 1G8 Substitutionen ” in Bd. xx of the Mathematische Annalen (1882).
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natural extension of the tlieory of equations of the fifth

degree given in the following pages.*

§ G. Infinite Groups of Linear Surstitutions of a

Variarle.

Wo now pass to the second generalisation of the previous

statement of the question. We sliall not alter the number of

tlie variables, but the number of the substitutions, inasmucli

as we start from infinltr groups instt^ad of finite groups.

Neglecting tlu'. form-theory standpoint, I will here only make
mention, in a fiinction-theory form, of the most simple examples

of all.f In the place of the rational functions of (which

remain unaltered for the groups of a finite number of substitu-

tions), we have then transcendimt but one-valued functions.

Let us first consider in this sense the sinipJ// pryutdlc and

the iriijonomvtrie functions.

A periodic function of ^ satisfies tlio fundamental e({uation :

(12) ./(- + w««) =/('')>

where in can denote any posii>ive or negative integral number.

We have here, therefore, the group of substitniions :

(
13

)
= +

in relation to which the c:-plane is decomposed in the well-

known manner into an infinite number of “ equivahmt ” parallel

strips, which are ‘‘ fiindaniental domains for the group in the

sense before explained. The simplest periodic function :

* If we wished to treat equations of the sixth degree in an analogous

sense, it would be necessary, after adjunction of the square root of the discri-

minant, to start from that groux) of 300 linear transformations of space which

I have established in Bd. iv of the Math. Ann., l.c., and to which latterly

Signor Veronese has returned from the side of geometry (“ Sui grupjn

n^o della figura di sei complessi lineari di rette,” &c
,
Aniiali di Matematica,

ser. 2, t. xi, 1883).

t It would follow that we should make si)ccial mention of the doubly

peHodicfunctions also. But these have a somewhat more comx)licatcd char-

acter than the other examples. For in their case there is no individual

fundamental function by means of which all the rest express themselves

rationally ; we must rather start from t%co functions, Zj, Zq (between which

an algebraical relation of deficiency exists).
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(14)
2iirZ

assumes within such a strip every value once
;
in consequence

of which all other periodic functions, which arrive at every value

a finite number of times in an individual parallel strip, express

themselves rationally in terms of We see that this plays,

with regard to the group (13), the same role as formerly the

rational fundamental function denoted by the same symbol

played in the case of the finite groups. We can also, as in the

case of the finite groups, speak of an “ equation ” which apper-

tains to our group. This is simply formula (14) conceived in

the sense of our requiring to compute z from a given Z, Let
2iiiZ

US consider here that we can look upon e “ as the limiting case

of a power with an increasing exponent, and accordingly (14)

as the limiting case of a binomial equation. To this end it

suffices to recall the well-known definition

:

(15)

We find the transition to tlie irigommeiric functions on com-

bining with (13) the new substitution:

(16)

and thus doubling the number of the substitutions to be taken

into consideration. To obtain appropriate fundamental domains

appertaining to the new group, let us draw the straight line

which contains the point c= ?/ia, and decompose, by means of

it, each of the parallel strips hitherto considered into two parts.

In place of the fundamental function (14) the following now
occurs

:

(17)

2tirg - 2\ifZ

a , a n ^tTTZ
e +e = 2 cos — ;

a

our “ equation ** requires ns therefore to eomimte^ from the value of

the cosine, the value of the argument. This equation is also a

limiting case of the former one. Namely, let us first write the

dihedral equation

:

42j%"
= -z,
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in the following form

:

•4-2+2;

m iC •

let us then substitute 1 -{— for and allow n to increase be-
n

yond all limits
;
then the left side

:

is transformed into 2 cos iio.

Over and above these familiar examples, let us now consider

further the rl/ipf.lc modular fitnctiom, and certain other func-

tions related to tliem which Herr Srhtrarz was the first to take

into consideration in his oft-cpioted memoir on the hypergeo-

metrical series (in Borchardt’s Journal, Bd. 75, 1872). In § 8

of our third chai^ter wo have, as was before explained, established

for the I'oot z of the dihedral, tetrahedral, octahedral, and icosa-

hedral equations in common, the differential equation of the

third order

:

1 1 1 1

(18) jyj + 2,
,"2 +”2(

’

where for z/g* ^3 respectively the numerical values in the fol-

lowing oft-used table were to be introduced

:

Dihedron 2 2 n

Tetrahedron . 2 3 3

Octahedron . 2 3 4

Icosahedron . .
|

1

2 3 5

and indeed these are, as we just showed (in § 2), the only

numerical values for which i + - + - is >1. The fmieiiom of12 8

Herr Schwarz arise on inserting in (18) for v^, any other

three integers (whereupon - +— + ^ will be "?!).
’'1 ^2 ''3
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In order to give a representation of the march of these func-

tions, let us remark the following. In the third chapter we

have seen that, in virtue of our fundamental equations, the

half-plane Z will bo represented on spherical triangles of the

2;-sphere, the angles of which are respectively

the same takes place in the case of the functions we are now

speaking of, as soon as we have fixed upon the particular solu-

tion of (18), which we wish to take into consideration, and

then develo]) this analytically. But while, corresponding to

the algebraical character of the fundamental equations, a finite

number of spherical triangles then sufficed to cover the ;:;-sphere,

now an infinite number of such triangles (no one of which

infringes on another) are placed side by side. We must here

distinguish when “ 4- - is = 1 or <1. In the first case, all
^

.Vl ^2 V3

the spherical sides which bound the triangles pass, when pro-

duced, through a fixed point on the ;t^-sphere, and we approach

nearer and nearer to this fixed point as we multiply the tri-

angles in succession, without, however, actually reaching it.

The function Z has a finite value everywhere, except at this

point.

In the other case, the bounding spherical lines have a

common orthogonal circle, and this circle forms the limit which

we approach, by increasing the spherical triangles, as near as

we like, without, however, crossing it. Hence the function Z{z)

e.v^ists only on one side of the orthogonal circle
;
the orthogonal

circled for us what is described as a natural boundary As

regards tiJie corresponding group of linear substitutions, let us

consider thei'^ spherical triangles in question alternately shaded

and non-shad^ed. The group then consists of all linear sub-

stitutions of / 'i which change a shaded triangle into another

shaded triangh ^ (or a non-shaded into a non-shaded triangle).

Amongst the functions thus introduced, the cU^^tic modular

fiinctio7is now for m (to limit ourselves to the simplest kind) a

special case, the ^case = 1^2=3, v^= 00 . The spherical

triangle of the ;2;-Bj^phere has then, corresponding to the value

of an angle equa J to zero. If we allow the limiting circle,

* Cf. throughout the mt ^moir of Sohwarz above cited, in which, moreover,

appropriate figures are give: u.
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which Z(z) possesses on the ^-sphere, to coincide with the meri-

dian of real numbers, we arc able to ensure that the totality of

the corresponding linear substitutions is given by those intefjral,

real substitutions

:

"
~yz + S'

whose determinant is = 1 . Let be the invariants

of a binary biquadratic form r/^) (see § 11 of the second

chapter), then it is known that A =//2^— ^7//3^ is the correspond-

ing discriminant. Now put the Z in question equal to the

absolute invariant Then the z[Z) is nothinu else than the

ratio of two primitive periods of the e/liptie inteijral

:

J'
'

iK'
therefore the of the Jaeohian notation:^

It is impossible to enter here more minutely into the various

relations thus touched u2)on. We will only bring forward this

remark, that, in virtue of the conception developed, the elliptic

modular functions appear, just in the same way as the expo-

nential function and the cosine, as the last term of a series of

infinitely many analogously constructed functions. Put in for-

mula (18) throughout equal to 2, equal to 3, and then

let z/gj beginning with 2, assume successively all integral posi-

tive values. Then we have for v^=2 a case of the dihedronf

(only that is taken >1/3, whereas we have usually elsewhere

arranged the in the order of the magnitudes), for 1/3= 3, 4, 5,

the tetrahedron, octahedron, and icosahedron, in order; then

See Dedckind in Borchardt’s Journal, Bd, 83 (1877), also my essay “ Ueber

die Transformationen der elliptischen, Fanctionen,”&c., in Bd. xiv of the Math.

Ann. (1878). Anyone specially interested in this theory should consult parti-

cularly the memoir of Herr Ilurwitz in Bd. 18 of Mathematische Annalen

(1881) “Grundlagen ciner independenten Theorie der elliptischen modul-

funotionen,” etc.).

t It is the same case to which, as explained in § 7 of the second chapter, the

calculation of the double ratio of four points leads, or of the modulus of the

elliptic functions, and which, moreover, will form a starting-point in the

sequel for the solution of equations of the fifth degree.
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for greater values of an infinite series of transcendent func-

tions, whose termination for 1^3= oo is formed by the elliptic

modular functions.

§ 7. Solution of the Tetrahedral, Octahedral, and Icosa-

HEDRAL Equations by Elliptic Modular Functions.

Short as the preceding suggestions are, they suffice to make
intelligible how it comes to pass that we can solve the equations

of the tetrahedron, octahedron, and icosahedron (or indeed the

special case of the dihedral equation just mentioned) by means

of elliptic modular functions. Let us first consider the loga--

rithmic solution of the binomial equation :

or what is quite analogous, the trigomitictric solution of the

dihedral equation

:

Both equations admit of being regarded as a limiting case of a

trivial algebraical solution, which consists in first calculating

f from the equation

:

or = - 4Z-I- 2,

understanding by m any positive integral number, and then

finding equal to a rational function of f :

The transcendent solution proceeds from this on taking m= 00,

whereupon is transformed into just in the manner de-

scribed, into 2 cos while z will become

Tlu case is ^gvcciscly the same 010w with the representation of our

fundamental irrationalities hy vieans of elliptic functions. We
convince ourselves, first, that each of the Schwarzian func-

tions i/j, admits of being represented uniquely by means

of every other vf, the exponents of which are integral

multiples of the original i/j, Pg, In particular, therefore, if

we limit ourselves to that series of functions for which = 2,

1^2= 3
,
the only condition necessary for a single-valued repre-
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sentation will be that is divisible by But this is always the

case if 00. All functions of our series, therefore, admit (f a

single-valiocd reimsentatiou in terms of the ellipiie modular fane-

tions, ami it u just this mhirh is* deserihed as a solution of flw eiiua-

tions in question by the help of the elliptic modularfunctions,
I communicate here, without proof, the simplest formulm

which present themselves in this direction for the tetrahedron,

octahedron, and icosahedron.* We write the three several

fundamental equations, as we have always done, in the follow-

ing manner

:

^3 = ^. 108/
= ^. iT2r

= ^-

• a ^

Then let Z, as just now, be the absolute invariant of an

iK*
elliptic integral of the first kind, the ratio of its periods,

_ K[ ^

q = e ^
, Then we have first, for the root of the octahedral

equation, the simple formula

:

(19) z = q\
I]?’

,2k2+2jc

this arises from the known equation

:

6>2(o,_

0.^{o, <jY

on introducing q^, instead of q, on the right-hand side.")*

* Compare Bd. xiv of the Math. Ann., pp. 157, 158 ; also the essay of Signor

Bianchi: “Ueber die Normalformen dritter und funfter Stufe des cllip.

Integ. erster Gatt.” ;
and my own note: Ueber gewisse Theilwerthe der

0-Functionen ” in Bd. xvii, ibid. (1880-81).

t This correspondsto theremark whichwe made above (p. 48 of the text) con-

cerning certain researches of Abel’s. In order to thoroughly understand the con-

nection of what is to follow in this direction, let us compute for the biquadratic

form (1 - jc*) (1 - h^x^) the absolute invariant . We then obtain

:

and on inserting here for yjk the letter z, we have exactly the left side of the

octahedral equation ; the symbols $2 ,
as also which I employ in the

text, are the well-known Jacobian ones.

K
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We find, further, for the icosaJicAral irratiomlity

:

(
20) z = q

— 00

an expression, therefore, which coincides with

2

when the term involving is disregarded.

The solution of the tetrahedral equation takes a rather more

complicated form. We will in this case first replace the z

hitherto used by a linear function of which vanishes at the

summits of '^'‘= 0, and becomes infinite at the opposite summits

of = 0. In this sense we write

:

(21 ) ^ ^ \ ^3 + 1 )^ + 2

For the ^ thus defined we have then, first, the equation

:

(21.)

and, further, the transcendent solution

:

(21b)

2(-1)-'(2k + 1)

- 67?. -

^(-l)* (6k+1)

We have thus for our three equations severally determined

one root
;
we obtain the remaining corresponding roots if we

substitute in g = e ^ for - the infinite number of values:K

“• K

r -^+8

where a, /3, 7, S are real integers of determinant 1. Here all

such systems a, /8, 7, S as coincide for moduhis v^y or can he brought
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into coincAdejwe hy means of a uniform ehawje of slyn, always yivc

rise to the same root/^

§ 8 . Formula for the Direct Solution of the Simplest

Resolvent of the Sixth Degree for the Icosahedron.

In accordance with the particular significance which we
attach to the icosahedral equation, the second of the formulas

(19)—(21) of course has most interest for us. We have already

explained that the simplest resolvent of the sixth degree which

the icosahedral equation possesses has been placed by Herr

Kromckcr in direct relation with the modular equation of the

sixth order for a transformation of the fifth order of the elliptic

functions (see § 15 of the preceding chapter). The formula in

question has since been considerably simplified by Herr KUyert

and myself by the introduction of the rational invariants.’f'

Since, in our researches on equations of the fifth degree, much
regard will bo paid to this very formula, it may also be com-

municated here, the proof being left out, and the symbols used

elsewhere being adapted.

We have in § 15 of the preceding chapter (formula (46))

given the following form to the resolvent alluded to

:

fO-lOZ. f + 12Z2 . =

Now let ^2 J
^ be the invariants, already so denoted, of an elliptic

integral, and let Z be taken Further, let A' be that

value which is derived from A by any transformation of the

fifth order. TJwn the root of our resolvent is simyly

:

(22)

* V3 is —3 for the tetrahedron, =4 for the octahedron, =5 for the icosa-

hedron. For the special dihedral equation appertaining hereto, the same
theorem would hold good for V3=2. Compare for this, Mathematische Anna-

len, Bd. ziv, pp. 153, 156.

t Cf. Bd. xiv of the Math. Ann., p. 147 ; also Bd. xv, p. 8G (1878) ; and
further, Kiepert: “ Auflosung der Gleichungen 6. Grades,” and “Zur Trans-

formations-theorie der elliptischen Functionen” (Borchardt’s Journal, Bd. 87,

1878-79) ;
and, finally, the memoir of Hurwitz just mentioned.
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If we like to express everything here in terms of K, iK\ and q
respectively, and thereby to derive at the same time from each

other the six different roots (22), we have first to insert the

following values for
//g

•

(23)
00

and then for fo fbe following six values respectively

:

00
^

(24) 00 £5

IT -1

where i/= 0, 1, 2, 3, 4, and e is to be taken=('^ . The indices

00
,
i;are here chosen exactly as in § 15 of the previous chapter.

The formula (23) can at the same time be used to complete the

data of the preceding paragraph
;
namely, the absolute invariant

of the elliptic integral is given by them in the form ;

(25)

( 1 + 2402'^® • Y
1

.
V 1 /

A 17287*

§ 9. Significance of the Transcendental Solutions.

The significance of the transcendental solution with which

we have now become acquainted is primarily a purely practical

one. Logarithms, trigonometric functions, and elliptic modular

functions have been long tabulated, in consideration of the

importance which they possess in other fields of analysis. By
reducing the solution of our equations to the said transcendent

functions, we make these tables available for use, and avoid the

tedious calculation which would be necessary in carrying out



SURVEY OF THE SUBJECT 149

the method of solution by means of hypergeometrical series

given in Chapter III.*

But there is a deeper conception of the transcendental solu-

tions, by which the latter lose the foreign aspect which they

seem to have in the midst of our other investigations, and

indeed are seen to be in intimate relation with them.

Let us consider, in order to fix our ideas, say, the solution

of the icosaliedral equation as it is furnished by (20). As

often as we subject
iK'

K to one of the infinitely many corre-

sponding linear integral substitutions, the c', in virtue of this

formula, experiences one of the 60 linear icosaliedral substitu-

iK*
tions. The (jrovi) of the Htth>itiiHtio)is of — therefore appearsK
iso'inor2)hoiidy related to the (jroup of the 60 icosaliedral suhstita^

tioiis. The isomorphism is only, if we may so express it, one of

“infinitely high ” meriliedry: to the individual substitution of

ilC
- yt corresponds one, and only one, substitution of 2J, while to
IC

every substitution of z correspond infinitely many substitutions

iK'
of— Let us now recall the considerations of § 5. LimitingK
ourselves there to finite groups of linear substitutions, we
required to bring into connection with one another such

equation-systems generally (or form-problems) as are related to

isomorphic groups. We now extend this problem to infinite

groups of linear substitutions, and recognise that oar transcen-

dent solutions realms special caMS of the prohlem so ycneralised.

We have obtained these solutions by making use of the theories,

developed in other quarters, of certain transcendent functions.

This is evidently a process which, in connection with our pre-

sent considerations, is not theoretically satisfactory. We rather

require a general treatment hy means of which the. developments

given in ^ by as well as o\ir present transcendent solutions
y
will he

furnished. Our reflections thus lead to a comprehensive pro-

blem, which will embrace the theory of equations of a higher

The unfortunate circumstance here arises, as regards the elliptic modular

functions, that Legendre's tables for the calculation of the elliptic integrals

have not yet been formed in a way which would correspond with Weierstrass's

theory of elliptic function.
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degree, as well as the law of construction of the ^-function.

In proposing this problem, however, we have reached the limit,

as in § 0, which bounds our present exposition, and which we
may not pass.*

* I will, however, not omit to call attention here to certain developments

of M. Poincare’s (on the general function which he denotes by Z) which
behave just in the way here alluded to; see Mathematische Annalen, Bd. 19,

pp. 502, SOa (1881).

I have, further, to append here the following quotations, which resemble

one another in relating to works which, with greater or less completeness, the

theories expounded in our first Part are connectedly dealt with : (1) Puchta^
“ Das Oktaeder und'die Gleichung vierten Grades,” Denkschriften der Wiener
Akademie, math.-ph5’s. Kl., Bd. 91 (1879). This work might also be consulted

throughout the following Part when wo are concerned with the solution of

equations of the fourth degree (by means of the octahedral equation).

—

(2) Cayley

f

“ On the Schwarzian Derivative and the Polyhedral Functions,**

Transactions of tlie Cambridge Philosophical Society, vol. xiii (1880). By
the “ Schwarzian derivative ” is there understood the differential expression

of the third order, which we established in § G of the third chapter.

—

(3) Wifs.uliefff “ Uebt*r die rationale!! Functionen, welche don doppeltperiodi-

schen analog sind,” Kasan (1880) (Russian). Herr Wassilieff there makes the

interesting remark that Hamilton had already considered the group of the

icosahedral rotations with reference to their generation from two operations.

(“ Memorandum respecting a New System of Non-Comrautative Roots of

Unity,” Philosophical Magazine, 1856.)
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CHAPTER I

THE HISTOllICAL DEVELOPMENT OF THE THEORY
OF EQUATIONS OF THE FIFTH DEGREE

§ 1. Definition of our First Problem.

The considerations of the preceding l\art have given us a deter-

minate problem with regard to equations of the fifth degree

:

we wished to try to effect this solution by the help of the

icosahedron. Now it would not be difficult to put the results,

which I have to develop in this connection, as such in tlie fore-

ground, and derive them in a deductive form. I prefer, how-

ever, to avail myself of the inductive method here also, and

this in such a way that, on the one hand, I pay regard to tlie

historical development of equations of the fiftli degree, and, on

the other hand, make free use of geometrical constructions. I

hope in this way to unfold to the reader not only the accuracy

of definite results, but also the process of thought which led

to them.

In accordance with what has been said, our first task must,

in any case, be that of giving an account and review of works

hitherto published which are concerned with the solution of

equations of the fifth degree, so far as these works will be used

in the sequel. I shall here, for the sake of brevity, leave on

one side all such developments as we shall not be immediately

concerned with, however weighty and essential these may
appear from more general points of view. To these belong,

above all, the proofs of Ruffini and Ahcl, by which it is estab-

lished that a solution of the general equation of the fifth

degree by extracting a finite number of roots is impossible
;

and the parallel works, likewise set on foot by Ahcl^ in which

all special equations of the fifth degree are determined, which

differ in this respect from the general equation. To these
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again belong the efforts of Hermit

e

and Brioschi to apply the

invariant theory of binary forms of the fifth order to the solu-

tion of equations of the fifth degree
;
not that the use of the

invariant-theory processes will be altogether dispensed with

in the following pages, only that in our case these relate

throughout, as in the preceding i^art, to such forms as are

transformed into themselves by determinate linear substitu-

tions, and not to binary forms of the fifth order. Finally, we
leave on one side fJie question of the reality of the roots of

equations of the fifth degree
;
in particular, therefore, the ex-

tended investigations by which Sylvester and Hermit

e

have

made the reality of the roots to depend on the invariants of

the binary form of the fifth order.

If we limit our task in the manner here described, there

remain two fields of labour which wo have to consider. The

object of both of them is to study the roots of the general

equation of the fifth degree as functions of the coefficients of

the equation. Both start by simplifying the functions in

question, so that, instead of the five independent coefficients

of the equation, a smaller number of independent magnitudes

will be introduced. It is only that the means which are em-

ployed for this purpose are different
;
in the one case it is the

transformation of the equations, in the other it is the eonst'i'uc^

tion of resolvents.

The method of transformation goes back, as we know, to

Tsehirnhaiis,* Let

(1) + .... Mx + N=0

be the proposed equation of the degree
;
then Tschirnhaus

put:

(2)
y^a + ISx+ yx^-\- .... fi , x^"^,

whereupon, by elimination of x between (1) and (2), he ob-

tained an equation for y, also of the degree, to which he

endeavoured to impart special properties by a proper choice

of the coefficients a, fS, y, , , . We will at once describe the

results which have been found by this assumption for the

* ** Nova methodus anferendi omnes terminos intermedios ex data sequa*

tione," Acta eruditorum, t. ii, p. 204, &c. (Leipzig, 1683). The title itself

shows that Tschirnhaus realised (as Jerrard did later on) the range of his

method.
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special case of the equation of the fifth degree. Let us first

agree tliat with tlie the .r’s are also found, at least so long

as the equation for the ?/’s, as we of course assume for the

equation
(
1 ), possesses different roots. For in this case the

equations ( 1 ) and (2 ) [in which we now consider y as the

unknown magnitude] have only one root r/; common, and this

jc can therefore be rationally calculated by known methods.

The method of the construction of resolvents has also long

ago been employed for the solution of equations of the fifth

degree. Notable in this respect is the year 177J, in which

Layranye, Malfatti, and Vandcnnondc, independently of one

another, published their closely-related investigations.* How-
ever, the results which these attained rather served to point

out the existing difficulties than to remove them. It was

not till Herr Kroneckcv, in 1858, succeeded in establishing a

resolvent of the sixth degree for the equation of the fifth

degree, that a real simplification was effected.f We shall have

to limit ourselves in our further account, so far as the construc-

tion of resolvents is concerned, to the exposition of Kroncvkcr^s

method and the further researches connected with it.

The two fields of labour which we have thus placed beside

one another are concerned, per sc, with purely alyehraical pro-

blems. Howbeit the development of analysis has entailed their

both appearing intimately connected with the more extended

problem : to effect the solution of equations by the help of

proper transcendent functions. We have shown in the last

chapter of the preceding Part J that such a use of transcendent

functions is primarily of merely practical value, and should not

be confounded 'with the theoretical researches on the theory of

equations. However, we must not neglect in the following

account to consider the different methods by which the solution

* Lagrange :
“ Kdflexions sur la rdsolution algdbrique des dquations,” Md-

moires de I'Acaddmie de Berlin for 1770-71, or (Euvres, t. iii.

Malfatti :
“ De aequationibus quadrato-cubicis disquisitio analytica,” Atti

deir Acoad. dei ITisiocritici di Siena, 1771; also, “ Tentative per la risolu-

ssione delle equazioni di quinto grado,” ihid,^ 1772.

Vandermonde: “ Mdmoire sur la resolution des dquations,” Mdmoires de

I’Academie de Paris, 1771.

t Compare the later references.

j I shall in future denote references to the preceding Part by letting the

number of the chapter, represented by an arabic number, succeed the roman

number I. Cf, therefore in this case I, 6, §§ 7, 9.
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of equations of the fifth degree has been specially connected

with the theory of eUiptia fvnctioiis. For it has been just these

methods, as we have already suggested, which have led to a

clearer conception of the purely algebraical problems also.

For the rest, let it be observed that there is no essential

antithesis between the two fields of labour which we are con-

trasting. If we have succeeded in turning a proposed equation

of the degree by transformation into another which contains

a smaller number of parameters, we can afterwards derive re-

solvents from the latter, and consider these as peculiarly simple

resolvents of the original equation
;
or conversely, if we have

come into possession of a special resolvent of the initial equation

by any of these methods, we can return from it, by renewing

our formation of resolvents, to an equation of the degree,

which latter will then admit of being transformed directly from

the proposed equation.

§ 2. Elementary Eemarks on the Tschiknhausian
Transformation—Bring’s Form.

In order to compute the equation of the degree which

the y’s of formula (2) satisfy, it is most convenient to construct

its coeflicients directly, as symmetric functions of the y^s, from

the symmetric functions of the In this way we recognise

at once that the cocffieient of is an infeyml homogeneous

fiindion of the degree of the indeterminate magnitudes

a, jS, 7, .... I'. Hence wo have a linear equation with n
unknowns to solve, if wo wish to expel tho term involving

from the transformed equation, and a quadratic equation of the

same kind appears in addition if the term involving is to

vanish also. We satisfy both these equations together if we
consider — 2 of the unknowns as parameters, and determine

one of the remaining ones by means of a quadratic equation

after eliminating the last unknown. I shall describe an equa-

tion in which the terms involving are wanting as a

canonical equation for the future. The Tschirnhamian trans^

formationy therefore, allairs us to reduce every equation to a canonical

equation with the help of merely a square root. On the other

hand, we meet with difficulties as soon as we require that another

term in the equation of the y’s shall vanish. In fact, we then

come upon elimination-equations of a higher degree, which



EQUATIONS of' THE FIFTH DEGREE 157

we do not know how to treat by elementary means. It is here

that a more searching investigation has brought to light an

important and—for our future ex]>osition—fundamental result.

The equation of elimination of which we speak will be of the

sixth degree if we require that the terms ^ shall

vanish simultaneously; it has hecn shown that hy proper choice

of coefficients of transformation for 7 ? >4 the said equation of the

sirth dcf/rec can he reduced to an equation of the third deyrec hy

the solution of quadratic equations.

The result tlius described is usually ascribed to the English

mathematician Jerrard, who made it known in tlie second part

of his Mathematical Kesearches (llristol and London, 1834,

Longman). But it is of much earlier date so far as equations

of the fifth degree are concerned. As Hill remarked in the

Transactions of the Swedish Academy, 1801, it had already

been published in 178G by E. S, Briny in a Promotionschrift

submitted to the University of Lund.* I should, nevertheless,

have retained in the following pages the practice, generally

diffused at the present time, of describing it in connection with

tJerrard, had not the latter in his works relating to this matter

brought forward, amongst some interesting results, a lot of

thoroughly false speculations; he b(dieved (just as Tschirnhaus

did) that lie could remove, by the helj) of his method, all the

intermediate terms, not only from equations of the fifth degree,

but equations of any degree, by means of elementary processes,

and did not lay aside this view in spite of incisive refutation

from the other side.*|- I shall therefore in future speak of

Briiufs equation. Let us write the canonical equation of the

* The full title runs :
“ Meletcraata quaedam mathematica circa trans-

formationcm aequationem algebraicarum, quae preside E. S. Bring . . . modeste

subjicit S. G. Sommelius.” We might, perhaps, have been led by the title to

suppose that Sommelius was the author, but I learn from Herr Backlund of

Lund that this would certainly be erroneous, inasmuch as the Promotion-

schriften were then composed entirely by the examiners, and only served the

candidates as a substratum for disputation. The principal points of Bring’s

treatise are reprinted in the communication, already mentioned, of Hill to the

Swedish Academy, and again in the Quarterly Journal of Mathematics, vol. vi,

1863 (Harley, “ A Contribution to the History,” &c.), and, finally, in Grunert’s

Archiv, t. xli, 1864, pp. 105-112 (with remarks by the editor).

t Jerrard’s further publications are found principally in the Philosophical

Magazine, vol. vii (1835), vol. xxvi (1845), vol. xxviii (1846), vol. iii (new
series) (1852), vols. xxiii, xxiv, xxvi (1862-63), &c., and are, therefore, for the
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liitli degree (as it is to be written henceforward) in the follow-

ing form

:

(3) + c = 0.

Then it will be to the purpose to retain the coefficient 5 in

Bring's form also. On substituting at the same time z for y,

for the sake of distinction, we have

:

(4) + ^hz + « = 0.

Bring’s equation still contains, as wo see, at first two coeffi-

cients. We can, however, at once remove one of them by
putting z=pt and then suitably determining p. We eau, tlure-

fore, hy a ‘proper Tschinihausian traiinfonnaflon, effect that the

five roots of the eqmUon of the fifth deyree shall appear to

depeml 0')i a sinyle variable mafpiltadc. This result is more
peculiarly important because we are much more completely

masters of the functions of a single argument than of those

of a larger number of variables. Let us write (4), e.y,, as

follows (as Hcrmite has done in his researches to be quoted

immediately)

:

then it is very easy, on the one hand, to exhibit by Riemann’s

method how the five roots t depend on A, and, on the other

hand, to establish for any values of A appropriate developments

in ascending and descending powers which allow the five roots

t to be computed to any approximation.

Having thus become acquainted with Bring’s result, we
may postpone a deeper consideration of its basis, and also a

criticism on its significance, till later, when we shall have fur-

ther occasion to do so in connection with our own developments.

I also omit to enumerate all the numerous commentaries which

the researches of Bring and Jerrard respectively have received

in the course of years. One of the first expositions of this

method, and, at the same time, the one most widely known,

is perhaps that mSerrefs “Traite d’algebre superieure ” (1st

edition, 1849). Hcrmite has also dealt with Bring’s transfor-

most part, later than the report (as lucid as it is volaminous) which Hamilton
furnished in 1836 for the British Association for the Advancement of Science

(Keports of British Association, vol. vi, Bristol). Further, Cockle and Cayley

repeatedly opposed the assertions of Jerrard (Phil. Mag., vols. xvii-xxiv,

1859-62).
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mation,* aiming, however, as already observed, at tiie appli-

cation of the invariants of binary forms of the fifth degree

;

we must remark that Hermite has determined the irrationali-

ties necessary for the transformation much more completely

than is usually done.

§ 3. Data concerning Elliptic Functions.

The special questions in the theory of elliptic functions on

which we must now inform ourselves lie in the region of the

theory of transforwafioit. Witli the usual notation let /c be the

modulus of an elliptic integral

:

X the modulus which results from a transformation of the

order, where n is to denote an uneven prime number. Then,

according to Joeohi'f and Sohnkc% respectively, there exists

between and >y\= i;an equation of the {n hl)^^ degree

in each of these quantities, the so-called modular equation

:

(
6 )

which, e.y., for a = 5
,
runs as follows:

(7) 71
^— + 5 (71^— v^) + 4u7j ( 1

— = 0.

Here fc may be expressed in various ways in terms of q = e~^^-

cjj.y as follows :

K

(8 )

1 ^ m
•« = n/2 . if .^ ;

we obtain the (7t+ l) values of v, which satisfy the modular

equation on inserting in place of in this formula in order

:

(9)
A JL 71-1

a

2iir

where a= The modulcur eqimtion therefore yivcs tis an

* In the comprehensive treatise (which will be often mentioned) : “Sur
r^quation du oinqiiitoe degr^,” Comptes Rendus, t. Ixi, Ixii (1866-66). Cf,

particularly t. Ixi, pp. 877, 965, 1073 ; t. Ixii, p. 65.

t “ Fundamenta nova theorise functionum ellipticarum ” (1829).
^

X ** .^quationes modulares pro transformatione functionum ellipticarum ’’

(CreUe’s Journal, t. xii, 1834).
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exavqyle of an equaticyn with one. parameter which can he solved

hy ellvptic modidar functions.^ The jmraineter is n\ we find

from it the corresponding q on reversing the formula (8), or

calculating the magnitudes K and K' from (5)

:

(
10)

djr.

—
. 1 —

dx

\/l — . 1 —

where /c'2 = 1-/^2. The (/i+1) roots v are then obtained by
means of the substitutions (9).

We now ask whether it is not practicable to effect, by the

help of the modular equation, the solution of other equations

also. To this end we shall have, above all—in accordance with

the explanations which we have given in §§ 1, 4—to determine

the (jroup of tlie modular equation. This is wliat Galois himself

has already accomplished.*!* Corresponding to the substitutions

(9), Galois denotes the roots of the modular equation by the

following indices

:

(11) voo,

If we then disregard mere numerical irrational ities,J the group

of the modular equation is formed of those permutations of the

^’„’s which are contained in the following formula

:

(12) (w),

which we have already considered above in special cases (I, 4,

§ 15 ;
I, 5, § 7). The coefficients a, p, 7, 8 are here otherwise

arbitrary integers which satisfy the condition (aS - Py)^ 1

(mod. n).

We interpret this result specially for n = 5. The group (12)

will then be, as we saw before, simply isomorphic with the group

of the 60 icosahedral rotations, ix., expressed in the abstract,

ivith the (jroiqj of even ^permutations of five thinys. We hence

* We have already become acquainted >vitli other examples above, I, 6,

§§ 7, 8 ; since, however, we have here to explain the historical development of

the theory, these are for the present not considered.

t See “(Euvres de Cralois,” Liouville’s Journal, t. xi (1846).

X According to the researches of Hermite, the single numerical irration-

ality here coming under consideration is Nr ( - 1) * .71, Cf. the exposition

in C. Jordan’s “Traitd des substitutions et des dquations algdbriques,”

p. 344, &c.
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conclude that the modular equation (7) possesses resolvents

of the fifth degree, whose discriminant, after adjunction of a

numerical irrationality (\/5, according to Ifermitc), is the square

of a rational magnitude. Will it be possible to put the general

equation of the fifth degree, after adjunction of the square

root of its discriminant, in connection with such a resolvent

by means of a Tschiriihausiaii transformation ? Or, conversely,

shall we be able, after adjunction of the square root of its dis-

criminant, to establish a resolvent of the sixth degree of the

general equation which proceeds from the modular equation

(7) by appropriate transformation? These are just the two
ways of attacking the solution of equations of the fifth degree

by elliptic functions which have been taken in hand and worked
out by Heunite and Kroncelrr respectively. Before we enter

on an account of their results, we have an important addition

to make from the theory of elliptic functions.

We mentioned just now the idea of subjecting the modular

equation itself to a Tschirnhausian transformation. This has

already been done in a certain form by Jacobi, wlio placed

alongside of the modular equation (6), properly so called, a

series of other equations of the degree which can

replace it. It is no part of my plan to communicate a rational

and comprehensive theory of the infinite number of equations

which thus come under consideration.* We must confine our

thoughts to an especially important result which Jacobi had

established as early as 1829 in his “ Notices sur les fonctions

elliptiques.’^ f Jacobi there considers, instead of the modular

equation, the so-called muUiplier-equntion, together with other

equations equivalent to it, and finds that tluir (/t [ 1) roots arc

TV -f" 1
composed in a simple manner of elements, with the help of

merely numerical irrationalitus. Namely, if we denote these

elements by A^j, A^, . . . A^, and, further, for the roots % of
2

the equation under consideration, apply the indices employed

by Galois, we have, with appropriate determination of the

square root occurring on the left-hand side

:

* Cf. for this, so far as modular equations proper are concerned, my de-

velopments: “Zur Theorie der elliptischen Modulfunctionen,” in Bd. xvii of

Mathematische Annalen (1879).

t Crelle’s Journal, Bd. iii, p. 308 ; or Werke, t. i, p. 261.

L
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( 13 )

•Jx: ^ /y/(— 1) ^
. A,„

N/.:v-A„ + e,A, + tM,+ . . .
n—

I

2

2fir

for z;= 0, 1, . . . —
1) and e= ,

so that, therefore, the fol-

lowing relations hold good between the :

(
14

)

^ \/Zp= \j(— 1) . W . n/-2oo,

V

V V

where N is to denote any one of the non-residues for

modulus n,

Jacobi has himself emphasised the special significance of

his result by adding to his short communication: “ C^est un
theoreiue des plus importants dans la theorie algdbrique de la

transformation et de la division des fonctions elliptiques.” Our
further report will show how true this remark has proved. In
the hands of Kroneckcv and BHoschi, the formula) (13) (14) have
attained a general importance for algebra, inasmuch as the

savants just mentioned determined to consider Jacobies equa-

tions of the (h+ 1)^'^ degree, i,c,, therefore equations whose

(71+1) roots satisfy the established relations, independently of

their connection with the theory of elliptic functions.* But in

particular, on the existence of the Jacobian equations of the

sixth degree (which correspond to ?i= 5), rests Kronecker’s
theory of equations of the fifth degree, as we shall soon have
to show in detail.

§ 4 . On Hermite’s Work of 1858.

We have now all the preliminary conditions for understand-

ing Hcrmite's first work in this connection, the oft-mentioned

* I follow throughout the notation and nomenclature of Signor Brioschi
as I did in my earlier publications. Herr Kronecker differs particularly in
writing «=/*, and thus obtaining equations of the (27i+2)th degree, where-
upon linear identities corresponding to the formulas (14) exist between the
magnitudes/. I do not see that this possesses many advantages.
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memoir of April 1858.* Hermite had even earlier been con-

cerned (as also had Betti) witli the proof of Galois' data con-

cerning the group of the modular equation. But the object

was, so far as the case 7?~5 was concerned, to actually esta-

blish, in the simplest form, that resolvent of the fifth degree

which the modular equation (7) ought to possess. This is what

Hermite now attained to, when he put

:

(15) y= (« » - »’«) («1 - «4) (‘’2
-

and found the following corresponding equation of the fifth

degree

:

(
16 )

7/*- 24
. 53.1^4

{
l - u^y- (H-w8)-0.t

We have here exactly the Brimj form with which we became
acqujiinted above, and, in fact, it is easy to identify any Bring

equation with (l(i) by a suitable choice of u. It is sufficient to

return to the simplified form which we communicated in
(5 )

:

We reduce (16) to this form on taking:

(17) y = 2V^.t4.x/r-w8.^

the coefficient A will then be equal to the following expres-

sion :

(
18

)
i/p ‘ u^{\-u^)\ '

and here we determine u from A the more easily in that we

have to do with a reciprocal equation with regard to u. Hence

the solution of any Bring equation is furnished by tlie formulce

of Hermite, and with it indirectly the solution of the general

equation of the fifth degree by means of elliptic functions.

Hermite's work has, as follows from this short account, no

kind of relation to the algebraical theory of quations of the

fifth degree. Bather it moves throughout in t e field of elliptic

modular functions, and, moreover, the series of further re-

searches which Hermite has published on the theory of modular

* Comptes Rendus, t. 46 ;
“ Sur la resolution de rdquation du cinquieme

degre.”

t For the proof cf.t say, Briot-Bouquet, “ Th6orie des functions elliptiques”

(Paris, 1876), p. 654, &c.
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functions took its origin in these. This is the reason why
Hermito’s solution of the equation of the fifth degree only

comes cursorily under consideration in our following exposi-

tion
;

for the use of elliptic functions appears altogether

secondary to the conception which wo shall henceforward

maintain. This would, of course, be at once changed if we
wanted to take into account in detail the general ideas which

we formulated in the concluding paragraph of the preceding

Part, a course which must be deferred to future expositions.

Together with llermite’s first work we advisedly men! ion two

communications of Brimchi and Joitbcrt, who both compute the

resolvents of the fifth degree for the multiplier-equation of the

sixth degree (a special Jacobian equation, therefore, of the

sixth degree), and hence likewise obtain the equation (16).*

Kronecker had also, as he informs Hermite, dealt originally

with resolvent construction of this kind.f

§ 5. Tke Jacobian Equations of the Sixth Degree.

Oontinuing our account, let us now first turn our thoughts

to the researches which Brvmlii and Kroimker have made with

regard to Jacobian equations of the sixth degree.J Let us first

remark the following facts. Whenever two investigators have

worked at the same subject simultaneously and in relation to

one another, it is difficult to distinguish what was discovered

by the one, what by the other. The chronological method,

which refers to the dates of the individual publications, is

certainly not always appropriate
;
but it is, after all, the only

one which can be handled with any certainty. In this sense

we shall now proceed on the basis of this method. I begin

with recounting the works which Signor BrioscM has published

in the first volume of the Annalidi Matematica, Serie I (1858).

Brioschi :
“ Sulla risoluzione delle equazioni di quinto grade ” (Anriali di

Matematica, Ser. I, t. i, June 1858), Jouhei't in a communication from Her-

mite in vol. 46 of the Comptes Renv^us ('* Sur la resolution dc I’equation du
quatri^me degre,” April 1858). See also Joubert : Note sur la resolution de

r^quation du cinqui5me degr4,” in the Comptes Rend us, t. 48 (1869).

t Letter to Hermite, June 1868. See Comptes Rendus, t. 46.

X Compare the exposition of this relation by Hermite in his memoir, already

mentioned : Sur I’dquation du cinqui^me degr4,” Comptes Rendus, particu-

larly t. 62 (1866), pp. 246-247.
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After Signor Brioschi had first proved * (1. c.) the data of

Jacobi, he concerned himself with the actual establishment of

the general Jacobian equation of the sixth degree. His result

is as follows.! Let A^, A^, A^ be three magnitudes which occur

in (13) corres^Donding to -^= 5 ;
further, let:

rA = A,24.AA,
B SAo-^AiA,- 2Ao^A.^A 2 + - A,(A,^ + A/),

(19) {
6^ = 320A,«A,2A.2 - 160Ao‘Ai»A/ 4- 20Ao-Aj^A./ + 6Af^Ao"

- 4A,(Ai^ + Ao") (32Ao4- ‘iOA.^A,A^ + 5A^-A.,^)

Thoi the, (jcneral Jacohian equation of tlve. sidk etajrcc. will he tlic

foliowiny

:

(20) {z-Af-4.A(z--Af^\ 0B(z-Af- C{z- A) + (5712 _ ^ c) = 0.

Brioschi further seeks to construct a resolvent of the fifth

degree as simple as possible for this equation, and to this end

first X puts (following Hermite’s example)

:

(21) y = {z^-^)

but then remarks, in connection with a letter of Hermite’s, that

the square root of this expression is already rational in the A’s,

and gives rise to an equation of the fifth degree.§ Let be

this square root
;
then Brioschi finds for the five values of

which X is susceptible the following formulm

:

(22) - Mi(4A,2 -A 1
A2) + €2»'(2A,A,2 _ A/)

+ _ 2AA" + Ai^) + A(4Ao‘^ - A1A2),

while for the corresponding eciuation of the fifth d(»gree he

finds this

:

(23) x’^+l0Bufl + 5(9B^-AG)x-^l^_ = 0,

where IT is the discriminant of the Jacobian equation (20).||

The multi'plicr-equatiou of tlie, sixth deyree for elliptic func-

tions (to which Jacobi’s remark first related) is of course con-

tained in (20) as a special case. Brioschi finds that it is

* P. 175, 1. c. (May 1868). t P. 250, 1. c. (June 1858).

X Loo. cit. § P. 320, 1. 0 . (Sept. 1858).

II
I have here, in opposition to the original formula of Brioschi, given the

numerical coefficients, as Joubert had done later on (“ Sur l’6quation du
sixieme degrd,” Comptes Rendus, t. 64, 1867).
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essentially characterised by the condition i^= 0, whereupon

(23) becomes a Bring equation. To Herr Kroiievlccr is due the

credit of first directing aUention fo the cctse A = 0f and also of

effecting its solution hy means of elliptic funct ions. We need not

communicate here in detail his primary formulae as he noted *

them in his letter to Hermite, and as Brioschi then proved

them in the memoir (to be presently described more in detail)

in the first volume of the Atti of the Istituto Lombardo.*f

For they are considerably simj)lilied if, instead of the modulus

(which llerr Kronecker used), the rational invariants of the

elliptic integral g^, //.j, A are introduced, and we have already

become acquainted (I, 5, § 8) with the formulas of solution in

question in this simplified form. In fact^ tlw Jacobian equation

of tine sixth degree vntk A = 0 is none other than that sinqdest

resolvent of the sixth degree which ire have estiddished in I, 4, § 15,

in the case of the icosahedron. We have only to put

:

(24) Ao = Ai = z^, A^ = - z.?,

and correspondingly

:

(25)

At the same time, for A = 0, the resolvent of the fifth degree

(23) is transformed into the following:

(26) a:5+105.e3 + 45i?2x-^p = 0,

which agrees with formula (27) of I, 4, § 11. I mention these

relations only cursorily, to return to them later more in detail.

It remains to consider one final direction of investigation with

regard to the Jacobian equations of the sixth (or indeed of any)

degree, that which Herr Kronecker first took in hand J in his

algebraical communications from the year 1861 onwards, and

which was then followed up further by Signor Brioschi in

particular in the first volume of the second series of the Annali

di Matematica (1867).§ The object is to construct from one

• Comptes llendus, t. 46, June 1858.

t “Sul metodo di Kronecker per la risoluzione delle equazioni di quinto

grado ” (Nov. 1868).

t Monatsberichte der Berliner Akademie.

§
“ La soluzione pill generale delle equazioni del 5. grado.” See also

“ Sopra alcune nuove relazioni modulari,” in the Atti della R. Accademia di

Napoli of 1866.
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Jacobian equation a new one by a Tschirnliausian transforma-

tion. Herr Kronecker remarks that this is possible in two
ways, inasmuch as the roots Za>, of the transformed equation

(which correspond to the 2*, of the original equation) either

just satisfy the formulae (13), (14) (where e can be replaced by

e® at pleasure, understanding by 72 a quadratic residue of n ;

this only signifies a change in the order of the roots)
;
or they

satisfy those others vliieh i^roeced from (13), (14), on replaeiny e

hy e^, where N is to denote an arhitrary non-resUlne to the modic--

lus n. Let n be, as we will now assume, equal to 5 ;
then wo

can in the first case put Jz equal, fpr example, to or

equal to the most general expression for here coming

under consideration arises on combining ^;7and the two mag-
nitudes mentioned multiplied by arbitrary constant factors

:

(27) s/Z^\. * *

We solve the second case on first constimcting for it a particular

example, which is furnished, say, by ;

(28)
1

- + C
z^A

afterwards we treat the Jacobian equation corresponding to this

example exactly according to formula (27). We shall return

later on more in detail to the principle of these transformations.

Meanwhile let us find room for the following remark. If we
calculate for the f~Z of formula (27) the expression this will

be an integral homogeneous function of the second degree of

the \, /X, V, We can make this zero by, for instance, putting

i;= 0 and determining \:/x by means of the resulting quadratic

equation. We ran therefore hy mere extraction of a square root

transform the general Jaeobian equation of the sixth degree into

one with A==0.

Signor Brioschi has since collected * his researches here in-

dicated, as also the further ones to be described presently.

* “Ueber die Auflosung der Gleichungen fiiuften Grades” (1878).
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which relate specially to the theory of equations of the fifth

degree, in 13d. xiii of the Mathematische Annalen; and they

are all the more welcome because his original publications,

widely scattered as they were, could have been only with diffi-

culty accessible to many mathematicians. Herr Kromcker has

also since returned to the theory of the general Jacobian equa-

tions,* but the questions there treated by him lie beyond the

limits which are prescribed for our present exposition.

§ G. Kronecker’is Method for the Solution of

Equations of the Fifth Degree.

Having premised the theory of the Jacobian equations of

the sixth degree, we can with ease describe the nature of that

method of solution which llcrr Kronccker has developed in his

oft-cited letters to Hermite (Comptes llendus, t. 4G, June 1858)

for the general equation of the fifth degree. The Jacobian

equations of the sixth degree are very intimately bound up with

the theory of elliptic functions, but they also represent, as we
have already remarked (and this in virtue of formulae (13), (14)),

a remarkably simple type of algebraical irrationalities per sc,

Herr Kronecker^s particular discovery is this : that from the

general equation of the fifth degree, after adjunction of th>e square

root of the discriminant
^
rational resolvents of the sixth degree can

he established which are Jacobian equations. To this is appended

the further remark, which we led up to just now: that we can

transfonn the Jacobian equation in question by the Itclp of only

one additional square root into (me with -4 = 0, therefore into a

<normal form with only one essential parameter which admits of

solution by elliptic functions.

In Herr Kronecker's original communication the two points

here separated are, however, not clearly distinguished. Herr

Kronecker limits himself to communicating the following

rational function of the five roots of an equation of the fifth

degree

:

Monatsberichte der Berliner Akademie of 1879 :
“ Ziir Theorie der alge-

braischen Gleichungen.'*

t Here again we reduce it to only one parameter by putting z^pt and
determining p suitably.
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/(n •'o> 3^1. *2> ^i)
VI 4 /I -4

(29)

_<ip Sp
m+»t*^w+27i I m‘* m w \2u/i

in which he supposes v so determined that Sf^ = 0, and then

remarks that the several /*&, which arise from (29) by even

permutations of the a:’s, satisfy an equation of the twelfth

degree of the following form

:

(30) /2-10(/»./«+5l/^2^f ./2,

which will admit of solution with the help of elliptic functions.

Here (30), provided we put /^=^z, is the *Jacobian equation with

A = 0, and the vanishing of A corresponds to the vanishing of

We are indebted to Signor Brioschi for having made the

deeper meaning of Kronecker’s method accessible to the mathe-

matical public in a lucid and at the same time a more general

form, and this in the memoir mentioned just now :
“ Sid metodo

di Kroneclce)',^^ &c., in the first volume of the Atti of the

Istituto Lombardo (Nov. 1858). Wo do not here recur to the

contributions which Brioschi has there made to the general

theory of the Jacobian equations of the sixth degree. What
here interests us is that hv, establishes a cjcneral rule of construc-

tion for (he roofs z, of which a si)ecial case oeeitrs in formula (29).

Let:

(31) X.2,, o-g, x^

be a rational function of the five .-c’s which remains unaltered

for the cyclic permutation

:

(j?0» ^'2> ^’3> ^’4) )

further, let

:

(32) v' = v{x^, x^, 0
*

3,
.^*

2, a^i),

Brioschi then puts

:

(33)

and derives from this function five new functions ?q, 7/
3 ,

u^^

by first subjecting the to the substitution

:

xf = .7
-

0 , xf = X./ - xf = X^y x( = ^
2 ,
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and then bringing into application the cyclic permutation

already mentioned. Thev 1he foilowing expressions arc in general

found to he the roofs of a Jaeohian equation of the, sirth degree,

which remains unaltered for all even permutations of the ah, and
hence possesses as coefficients rational functions of the coefficients of

the. equation of the fifth degree and of the square root of its dis-

criminant :

(u^ s/5 4- u^+ + ^^3 + uff,

-I- n/5 - + ^2 + ^^3 “ ^4)^

(^00 - 4- n/5 -> + ^3 + ^4)^

(^00 + ^0
~ ~

“*^3 +

(^00 + ^^0 + + W3 n/5 + 2/4)2,

(2/^ — UQ + Uy + U
^
—

2/3 + 2/4 \/5
)
2

.

These formiilm become still more concise if we note the elements

Aq, Aj, Ag, of which the in accordance with (13), are com-

posed. The comparison gives simply

:

Aq sl5-U^ \/5 + 2/(, + 2/i +2/2 + W3 + ^4»

2
Al \/5 = 2/(j + ch/j + €%2 + ^^^3 + €2/4,

A2 V5 = Wq -h €Uy + €22/2 + €^2/3 + €%4,

2i)r

where €=e^, — — The formulae (29) are, as we

have already pointed out, included in (34) as a special case.

Herr Kronecker has here from the first endowed the functions

V or u which he used with a parameter v occurring linearly, in

order to be able to satisfy the additional condition A==0.

Signor Brioschi gives, for another case connected with the

invariants of the binary form of the fifth d(‘.gree, the full calcu-

lation of the final equation of the sixth degree.

We have just become acquainted in (23) with Brioschi’s

simple resolvent of the fifth degree for the Jacobian equation of

the sixth degree. Now considering the Jacobian equation of

the sixth degree in its turn as a resolvent of the general equa-

tion of the fifth degree, we recognise the possibility of t7U7is-

fo7'ming the general equation of the fifth deg7'cc hij mca7is of a

Tschirnha7Lsia7i transfo7miationy whose coefficients are 7^atio7ial

after adfiinction of the squaax root of the discrimi7ia7it of the
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proposed equation, into an equation (23), i.e., an equation in

which the fourth and the second poiver of the unknown arc

wantimj* In particular, if we annex, besides, Kronecker’s

auxiliary equation for v, we can make A==0 in this equation,

and thus obtain the form (26), which, like the Bring form, only

contains one essential parameter. Hcrniite, and after him

Brioschi again, have dealt in detail with the problem of con-

structing the Tschirnhausian transformation in question in an

explicit form. We should have to go into these works more

minutely, if it were not (as we have said) that they are essenti-

ally controlled by the requirement: to bring into play the in-

variants of the binary form of the fifth order. Let us therefore

only briefly refer here, first, to the elegant communication

which Hermite makes to Borchardt in Bd. 59 of the Journal

flir Mathematik (1861); then to his oft-mentioned exhaustive

memoir, Sur Vdquation du cinqnUme degrd, of which the second

half (Comptes Kendus, t. 62 (1866), pp. 715, 919, 959, 1054,

1161) is devoted to the exact accomplishment of all the calcu-

lations which appear necessary in Kronecker’s method; and

finally to a series of remarks which Signor Brioschi has then

appended to the developments of Hermite. (Comptes Kendus,

t. 63 [1866, 2], t. 73 [1871, 2], t. 80 [1875, l]).t

§7. On Kronecker's Work of 1861.

Though Herr Kronecker in his first communication to

Hermite had only cursorily and by an example, so to say,

demonstrated his method of solution of equations of the fifth

degree, he has since (1861) gone intoj the nature and prin-

ciples of it more thoroughly. Our account of it must be the

more complete in this place because the reflexions in question

in many respects lie at the root of our own developments in

* The mode of expression in the text premises what we shall presently

remark concerning the irrationality of

t Cf, also M. Roberts in the first volume of the 2nd series of the Annali

di Matematica (1867) : Note sur les Equations du cinqui^ime degr^.”

t Namely, in the already-mentioned communication in the Berliner

Monatsberichten, of which that part which relates to equations of the fifth

degree was reprinted in Bd. 59 of Borchardt’s Journal.
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the sequel, and on the other hand Herr Krouecker has given

a peculiarly scanty exposition of them, omitting all proofs.

First, Herr Kronecker expressly distinguishes between the

transcendental and the algebraical part of the solution. The

latter, the more particularly important, consists in the assem-

blage of all those algebraical operations which are necessary in

order to replace the general equation of the fifth degree by a

normal form, the simplest that can be chosen : how we elect to

calculate the roots of this latter given case by convergent

infinite processes, or by empirical tables, or what not, is a

question se which is not further touched upon. Hence the

Jacobian equations of the sixth degree for Herr Kronecker

now only come under consideration in virtue of their algebraical

peculiarities, not in virtue of their connection with elliptic

functions.

Secondly, Herr Kronecker remarks that we must draw an

essential distinction between the irrationalities which are intro-

duced for the purposes of the reduction of algebraical equations.

The irrationalities of the first—we might call them the natural

ones—are those which depend rationally on the roots x which

are to be determined, the same, therefore, as we have described

in the fourth chapter of the preceding Part as roots of

“ rational^ ^ resolvents. Alongside of these appear the others,

which we might call accessory, because they are irrational func-

tions of the aj’s. 8uch accessory irrationalities need not be

more complicated than the natural ones, e,y,, they may involve

the square root of a coefficient of the proi)osod equation. This

is the case with the expressions (29) which we just considered

;

these in themselves denote natural irrationalities, which, how-

ever, become accessory if the v is determined in the way ex-

plained with the help of a quadratic equation.

In accordance with this distinction, Hen* Kronecker further

asks to what point we can go in the solution of equations of

the fifth degree when we impose the restriction of only wishing

to employ nahiral irrationalities. The Jacobian equation of

the sixth degree contains primarily three parameters, to wit, the

three magnitudes which we have denoted by A, B, C, Herr

Kronecker remarks that by appropriate modification of his

method, without leaving the circle of the natural irrationalities,

we can replace these parameters by two only, a and h. On the
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other ha'iid^ he asserts, it is impossible^ witJmct accepting the aid of
accessory irrationalities^ to construct from the general equation of

tJie fifth degree a Jacobian equation with only one parameter, or

any resolvent at all with only one parameter.

The first of these two points may be immediately established

by calculation. We will show, viz., in the fourth chapter

following, that, alongside of tlie expressions of the second, sixth,

and tenth degrees in A^, A^, Ag, which we called A, B, C, yet

another expression of the fifteenth degree, D, is rationally

known, whose square is an integral function of the A, B, and (7.

Wo have already encountered this D as the fourth root of the

discriminant (divided by 5*^) of the Jacobian equation, in the

constant term of (23). Let us now, in the resolvent of the

equation of the fifth degree, replace the expressions A^, A^, A2

(35)

,
by ly * if *

functions of null dimen-

sions proportional to them. Thus, in the place of A, B, 0,

^15 ^42 ^70 Q ^105
D, appear respectively , -jp- y -jjir Hero we can

substitute for D throughout the integral function of Ay By G
which is equal to it. Then the new A, By Gy D depend, in

fact, on only two parameters, viz., the quotients of null dimen-

sions :

(36) a = |, 6=^,,

whereupon the required proof is achieved.

The proof of the second assertion is essentially more difficult,

and we must defer it till the conclusion of our main exposition.

It there appears as a consequence of properties of the icosa-

hedral substitutions which we have before brought into promi-

nence, and flows so naturally from them that the real basis

of the theorem in question seems to be disclosed by means

of them.

I come to the conclusion of Kronecker's work. Herr Kron-

ecker calls attention to the fact that, in the case of those

algebraic equations which admit of solution by the extraction

of roots, and indeed on the ground of the original develop-

ments of Abely the accessory irrationalities can be dispensed

with altogether. He then postulates the same for the solutixm

of higher equations : he only wants to see their redtcction brought
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in each case so far as the vse of thr natural irrationalities carriers

it. This is, therefore, the last step of the original method of

Kronecker, as we have just become acquainted with it : to

push the re.duction back to an equation wit-h ^ = 0. Or rather,

the theory lias to confine itself to placing the equations of the

fifth degree (in the way just suggest/cd) in connection with

Jacobian equations which contain two parameters
;
to investi-

gate the different kinds of reduction here possible
;
and, finally,

to see how, conversely, the roots of the equation of the fifth

degree are now represented in terms of the roots of the said

Jacobian equation of the sixth degree.*

As regards our own exposition, I should like, in the sequel,

not to retain the requirement here detailed. True, we shall

have to investigate—and this shall be done in the fullest manner
—how far we can get with the use of natural irrationalities

only. But, over and above this, the question arises, what is

the state of affairs with regard to the accessory irrationalities

which aid us in the further reduction
;
what are the simplest

results which we can attain to with their help ? The analogy

with those equations which are solvable by extraction of roots

does not seem to me to have much force. If, for the latter, the

use of accessory irrationalities is superfluous, we may perceive

in the necessary occurrence of these irrationalities, in the case

of higher equations, a characteristic feature of these latter, and

should rather proceed, in the case of equations of the fifth

degree, as the lowest case of higher equations, to fathom the

nature and significance of the necessary accessory irrationalities.

We shall the less be able to neglect these investigations, because

the treatment of the natural irrationalities is, as we shall see,

in a certain sense furnished by them.

* Here I should like to direct attention afresh to the concluding paragraph

of I, 5. If the illustrations there given are accurate, we can consider the use of

elliptic functions as an introduction of accessory irrationalities of infinitely

high order. If we, therefore, wish to retain Kronecker’s postulate, it is no

use trying to proceed to solve these equations with two parameters which we
have obtained, for these equations form a point beyond which further advance

is impossible.
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§ 8. OlUECT OF OUH FURTHER DEVELOPMENTS.

At this point we break off our historical account, inasmuch

as it seems to the purpose to interwefive the description of the

works still to be mentioned with the progressive exposition of

the following chapter.* Tlie object of this exposition is, as we
have repeatedly pointed out, to place the solution of equations

of the fifth degree in connection with the theory of the icosa-

hedron in a manner as simple and comprehensive as possible.

That such a connection is possible follows in several ways from

the exposition which we have so far given : for the Jacobian

equation with ^= 0 is, as we saw, a resolvent of the icosahedral

equation
;
and we can even conceive the Bring form as such, if

we suppose in I, 4, § 12, the ratio m : n so determined that the

term involving in the canonical resolvent vanishes.

However, it is not our intention to introduce the icosahedron

in such an indirect manner. We desire rather to expound the

theory of equations of the fifth degree connectedly, and in such

a manner from the outset that the significance of the icosa-

hedron will be recognised as necessary and fundamental. I here

employ freely constructions in the sense of projective geometry,

as I have already repeatedly noted. No doubt we can through-

out replace these by purely algebraical reflexions. Nevertheless

I believe that they are essentially useful, and am of opinion

that they must be also of importance in a similar form in higher

problems of the theory of equations.

* These are first the different essays which have been published by Herr

Gordan under the title, “Ueber die Auflbsung der Gleichungen funften

Grades,” and by myself as “ Weitere Untersuchungen uber das Ikosaeder. ” The

first are found respectively in the Erlanger Bcrichten of July 1877, in the

official report of the Naturforscherversammlung at Munchen (Sept. 1877), and

in Bd. xiii of the Math. Annalen (1878) ;
the latter in the Erlanger Bcrichten

of Nov. 1876, January and July 1887, and, finally, in Bd. xii of the Annalen

(1877). See also a communication from Brioschi to the R. Accaderaia dei

Lincei of Dec. 1876 (Transunti), and another to the Istituto Lombardo of

April (1877) (Rendiconti (2), X). To this add, further, Kiepert’s “ Auflosung

der Gleichungen funften Grades ” in the Gottinger Nachrichten of July 1878,

completed in Borchardt’s Journal, t. 87, Aug. 1878 ;
also my own works:

“Ueber die Transformation der elliptischen Functionen und die Auflosung

der Gleichungen 5. Grades” (Bd. 14 of the Annalen, May 1878), and ” Ueber

die Auflosung gewisser Gleichungen von 7. und 8. Grade” (Bd. 15 of tho

Annalen, March 1879).
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The details of our following exposition are distributed in

four chapters.

Our first object is to hriny the. main idea of the theory of

equations into a ycoinet rleal form. 11ere 1 adopt a mode of

exposition which I gave in 1871 in the fourth volume of the

Mathematische Annalen,* and develop in particular, by pursuing

this further, the geometrical conception of the Tschirnhausian

transformation and of resolvent construction. With a view to

what follows I append thereto a short excursus on the elements

of line geometry and the corresponding properties of the surface

of the second degree.

The following third chapter is devoted to the special theory

of the canonical equations of the fifth deyree, those equations

which contain neither the fourth nor the third power of the

unknown. On the basis of the theorem that surfaces of the

second degree possess two systems of rectilinear generators,

there arises for the said equations a peculiarly sim])le connec-

tion with the icosahedron, whence our earlier developments

concerning the canonical resolvent of the icosahedral equation

(I, 4, § 12) lead to explicit formulae for the roots of the proposed

equation. By this means we obtiiin in particular, as I develop

cursorily, the means of putting the Bring transformation into

a definite shape and understanding its real essence.

Our fourth chapter then explains the position of the icosa-

hedron in the theory of the yencral Jacobian equations of the

sidh deyree. It is shown that the latter, in the sense of I, 5, § 4,

represents a ternary form-problem^ and indeed such as arises

from the binary icosahedral problem hitherto considered, by a

certain simple process of translation. In the same way, all the

manifold results, which we have attained in the theory of the

Jacobian equation of the sixth degree, present themselves as it

were spontaneously and in part in an improved form. In par-

ticular, I shall expound how we accomplish the solution of the

general Jacobian equation, after adjunction of an accessory

square root, most effectively by the help of the icosahedral

equation.

Two ways are now open, as we conclude in the fifth chapter,

for solving the general equation of the fifth degree by means

* “ Ueber eine geometrische Interpretation der Resolventen algebraischer

Gleichungen.”
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of the icosaliedral equation, inasmuch as we are at liberty, viz.,

either to transform the given ecpiation by a Tschirnhausian

transformation into a canonical resolvent of the fifth degree, or

by construction of resolvt‘.nts to place it in connection with the

ternary form-problem just described. The one gives, if we like

to say so, a simplification of the method of Bring, the other a

modification of that of Kronecker. But, at the same time, we
recognise that the operations which are used in the two methods

differ not in their nature, but only in regard to their order. We
thus have the means of comprehending the whole of the older

works described in the preceding paragraphs from one point of

view. And here we also succeed in providing that indirect

theorem, established by Herr Kronecker, of which we just now
gave an account, and which can be conceived as a fundamental

conclusion not only of the probk'm of solution in its abstract

form, but also specially of our own considerations.

It is, perha[)s, particularly interesting that, in virtue* of our

exposition, the theory of equations of the fifth degree is again

brought near to that of equations of the third and fourth

degree. We have paid regard to this, wherever it seemed

useful, in brief footnotes.
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CHAPTER II

rNTIlODUCTION OF GEOMEI^RICAL MATERIAL

§ 1. Foundation of the Geometrical Interpretation.

The geometrical interpretation of etpiations of the fifth degree,

with wliicli we shall work in the following pages, rests on the

simple idea of using the roots '^‘3) -^4 of the equation as

homogeneous point-coordinates (where, of course, only the ratios

of the i/:’s are actually interpreted). Were wo not to add hereto

a further limitation, we should have to start from a space of four

dimensions. But this would be doubly inconvenient : we should

have to forego the juvgnant terminology which is at our dis-

posal for space of three dimensions, and should be unable to

assume results in a specific form. We will therefore introduce

a limitation which will be effected in every case by an easy

auxiliaiy transformation, viz., by laying down the condition that

in what follows v/’r are always to take

:

( 1
)

(md that, therefore, ive sJadl only consider equations of the fifth

degree of the form

:

(2)
\-hx^-^cX'\‘d = 0

(in which the term in is wanting). We can then, and in fact

immediately in virtue of (1), denote the ratios of the a;’s as

point-coordinates of ordinary space, its so-called pentahedral co-

ordinates, Such pentahedral co-ordinates are only formally

different from the ordinary tetrahedral co-ordinates of pro-

jective geometry
;
we might define them directly in this way,

that we consider four of them as tetrahedral co-ordinates, and

introduce the fifth in virtue of (1) as a linear combination of

the rest; only the symmetry on which we lay the greatest

weight in the sequel is then lost.’*'

* The introduction of superfluous co-ordinates, which are then connected

by a corresponding number of linear identities, is otherwise useful in geo-
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The geometrical interpretation here described derives its pri-

mary importance from our considering the different avrangnnoits

which we can impart to the roots To one and the same
equation of the fifth degree correspond in this sense at the

outset 120 points of space, in general distinct, which are only

known in the aggregate
;
the solution of the equation will then

consist in supplying the means of distinguishing the individual

points from the 120 introduced in this form.

The points spoken of here are, of course, not geometrically

independent. An arbitrary permutation of the pentahedral

co-ordinates, c.g,^ that which replaces by .i\, can be denoted

geometrically as a transformation of the mholc space, viz., as that

collineation thereof which corresponds to the formula

:

(3)

The 120 collineations wliich correspond in tliis sense to the

120 permutations of the .//s are clearly defined geometrically

by the fact that they all tr((nsform into itself the pentahedron

'which determines the co-ordinates. The geometrical connection

of the 120 associated points is just this, that they all proceed

from one of themselves by means of the said collineations.

I have here restricted the development of these funda-
mental ideas to the equations of the fifth degree. Tliis restric-

tion, however, is quite unimportant
;
a perfectly analogous kind

of geometrical meaning is possible for equations of the

degree, provided we start from projective space of {n— 2)
dimensions

;
thus, for equations of the fourth degree, from the

plane
;
for equations of the third degree, from the straight

line. We can here indeed take account of the Galois-alfect of

the equations by considering, instead of the possible permuta-
tions of the 7i-roots and the collineations corresponding to them,
only a sub-group thereof. It is unnecessary in what follows to

treat the matter under such general conditions, llowbeit, I

^ight just point out here the perfectly similar geometrical

meaning which we shall use in the next chapter but one, in our
investigation of the form-problem there discussed.

metry. Cf., c.g., Paul Serret’s “Gdomdtrie de direction” (Paris, 1869). The
system of pentahedral co-ordinates in particular was, I believe, first used by
Hamilton in his researches on the geometrical net of Mobius, which can be
derived from five points in space. See Hamilton’s “ Elements of Quaternions ”

(Dublin, 1866), pp. 67-77.
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§ 2. (classification of the CcUJivEs ANo Surfaces.

Let us observe, moreover, that we can classify the curves

and surfaces of our spacer (or in general the geometrical figures

existing therein) according to their behaviour with regard to

the 120 collineations (3). In general, an irreducible curve or

surface is not transformed into itself by any of the ] 20 oj)era-

tions
;

it appears then as one of the 120 associated figures, of

which each possesses the same properties both in itself and in

relation to the co-ordinate pentahedron. But it can also be

transformed into itself by the 7i.-transformations of a deter-

minate sub-group // contained in the aggregate 120 transforma-

tions. Then the number of the co-ordinated figures is only

120—
; each one remains unaltered by the ^^-transformations of a

sub-group which is associated with tlie group (j within tin? main

group. Evidently tlie same distinctions occur here which we
found in the fourth chapter of the first Part in treating of the

theory of resolvent construction.

We will introduce a definite terminology in connection with

this. If a figure is transformed into itself by all the 120 colli-

neations, we call it rcgfflar ; half-regular, on the other hand, if

this is only the case with regard to the 00 collineations which

correspond to the even permutations of the ./'’s, and which we
may denote shortly as the even collineations. In all other cases

we shall speak of irregular figures. The half-regular figures

group themselves together naturally in pairs, for the group of

the 60 even collineations in self-conjugate within the main

group
;
therefore if one figure is transformed into itself by the

60 even collineations, so will also the other be wliich proceeds

from it by an arbitrary uneven collineation.

The classification here described will be of importance for

the purposes of the theory of equations, inasmuch as we now
consider equations which contain parameters. We will only

count these parameters as they affect the ratios .r^

:

Then, if we have an equation with ore parameter, the 120 cor-

responding points X trace out, by the variation of the parameter,

a curve in space which will be transformed into itself by the

120 collineations, and which we shall call the image of the

equation. Similarly, we obtain, as the image of the equation,
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a surface when the number of essential parameters is two
;
the

surface is also transformed into itself by the 120 collineations.

The question whether this curve or surface is reducible or not

is evidently intimately connected witli the (jroirp of the given

equation of the fifth degree. To fix the ideas, 1 shall assume

that our parameters enter rationally in the coefficients of the

equation. At the same time, we will lay no stress on mere

numerical irrationalities
;
we shall, tlierefore, regard arbitrary

rational functions of the parameters as rationally known. Then
the Galois group of the equation [in conformity to I, 4] is trans-

formed into that which Hermite * has called, by way of defini-

tion, the group) of momxlroviy, i.r., the aggregate of those

permutations of the roots x which occur when we consider the

as algebraic functions of the parameters, and then let these,

starting from any initial values, so vary in tlie complex domain

that they finally return to their initial values. The point x

moves by this process of variation in the same irreducible

portion of the geometrical image corresponding to the equation,

and assumes therein, by suitable variation of the path, all

possible positions. We conclude from this that the irralucihJc

'portion in question is transfor^ned into itself hy just so many
collineations among the 120 which exist on the v:hole as there

are permutations of the xs contained in the group of monodromy.

It will not be difficult to confirm this general proposition in the

particular examples which we now enter upon.

§ 3. The Simplest Special Cases of Equations of
THE Fifth Degree.

With a view to our later developments, wo now consider

the simplest special cases of equations of the fifth degree,

namely, those which proceed from (2) by equating one or more

coefficients to zero, in which the other coefficients (in so far as

they influence the relations of the roots 'x) will have to figure

as parameters.

* Comptes Rendiis, t. xxxii (1851): “Sur les fonctions algebriques ;
” see,

too, C. Jordan, *‘Traitd des substitutions,” &c., p. 227, &c.
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First, let «=0
;
then we have, by (1)

:

(4) 2^*2 = 0,

IX.
f
an equation which represents a surface of the second order.

If we eliminate by means of (1) the and form the discriminant

from the left side of the equation then existing

:

V + ^1^ + ^2^ + ^3^ + (il?0 + i
+ ^**2 + ^ >

we arrive at + 5, a value, therefore, which does not vanish.

We conclude from this that our surface of the second degree

not only does not split up, but is never a cone. It is this

surface

—

regular in the sense agreed upon—which will play the

most important part in our further geometrical developments.

I shall therefore describe it as the Canonical Surface, con-

sistently with the fact that wo have already called an equation

which satisfies the relations (1) and (4), a Canonical Equation.

We proceed to the following case: b=0. Again making

use of (1), we obtain for the corresponding .>;’s

;

(5) ^^ = 0.

We are therefore led to that irreducible surface of the third

order which Clebsch has incidentally described as the Diagonal

Surface, because it contains the diagonals of the co-ordinate

pentahedron, i.e.^ those fifteen lines which, moving in one of the

five pentahedral planes, connect any two opposite angles of the

quadrilateral marked out in this plane by the other co-ordinate

planes. An equation with 6= 0 is, accordingly, to be described

in the following pages as a diagonal equation. The general

Brioschi resolvent, which we have become acquainted with in

§ 5 of the preceding chai^ter [formula (23)], is at the same time

the general diagonal surface, a circumstance to which we shall

return more in detail.

* Wc recall in what follows the formulae of Newton, which connect the

coefficients of the equation with the sums of the powers For our

equation (2) these formulae become :

8j = 0, 82 + 2a= 0, Sg4-36= 0, =

t See the essay (which will be again quoted) :
“ Ueber die Anwendung der

quadratischen Substitution auf die Gleichungen 5. Grades und die geometrische

Theorie des ebenen Fiinfseits,” in Bd. iv of the Math. Ann. (1871). The dia-

gonal surface has otherwise become of importance in the theory of surfaces

of the third degree ; consult, e.g., my work, “ Ueber Flachen dritter Ordnung,”

in Bd. vi of the Mathematische Annalen (1873).
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We next put a= 0, 7?= 0, at the same time. Then the rela-

tions (1), (4), (5) hold simultaneously, while the equation (2)

assumes firing’s form. Brinffs crjuaiions 'trill he therefore repre-

sented hy the eiirve of interscetioii of the eanonieal surfaee and the

diagonal surface. In gemeral, a surface of the second and a

surface of the third order intersect in an irreducible curve of

the sixth order, and of deficiency 4.* We shall show later on

that these properties present themselves unaltered in firing’s

curve, firing’s curve is therefore certainly regular, just as the

canonical surface and diagonal surface are.

The other cases follow in which at h^ast one of the coefficients

c, d vanishes. We will not here treat of these individually in

detail, inasmuch as we have not to enter specially into the con-

sideration of them. We would only note here that, in the case

d = 0, the figure in space would break up into irregular com-

ponents, these being the five planes of the co-ordinate penta-

hedron which correspond to the case d= 0.

§ 4 . Equations of the Fifth Degree which Appertain

TO THE Icosahedron.

We return now to the consideration of those equations of the

fifth degree which we have established in the fourth chapter of

the preceding Part as resolvents of the icosahedron equation,

and seek to arrange them in accordance with the ideas just

developed. They are equations with only one essential para-

meter Z (on the right side of the icosahedron ecpiation), which

are therefore to be denoted by curves. These curves s^fiit up,

as we shall show more precisely, into two regular portions. In

fact, the group of monodrotny is given in every case by the

sixty icosahedron substitutions.

Let us begin now, say, with the so-called resolvent of the

i^’s of I, 4, § 11

:

(6) (1-Z)2-40z43(1-Z)+15m-4 = 0.

Calculating the sums of the powers, we find

:

A A ^ ,

Si - 0. 82 -
3 (1 _ »3 - 0, S4 - gg

&C.,

* See, €.g,t Salmon-Fiedler’s “ Analytical Geometry of Space ”
(3rd edition,

Teubner, 1880 ).
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therefore

:

(7)

We obtain from this as gromrlrleal imarfc of (6) a carve of the

tvriftli order irhich is the intersection of tlu diagonal sarfaex^

with the surface of the fourth order (7). I say, now, that this

curve splits up into two lialf-regular portions of tlio sixth

order, of whicli eacli represents a ratioutd. curve in space. In

fact, the roots of (6), apart from their arbitrary arrangement,

are proportional to the octahedral forms previously introduced

:

(
8
) ty

,
Z.,) = •zf — 2€^*'Z^Z^^ + ^^z,^

2 »

wliore are connected with Z by the icosahedral equation :

1728

If i^Tis an arbitrary variable, so is We shall therefore obtain
''2

a i)ortion of the twisted curve in question if we introduce a

factor of proportion p, and writer the following equations

:

(
10

) pXi, — ,

.*'

2)

,

and now consider : z,^ as current parameter. This clearly gives

a rational, and therefore irreducible, twisted curve of the sixth

order.* I say, now, that this is half-regular, and therefore our

twisted curve of the twelfth order supplies, besides (10), a, second

rational twisted curve of the sivth order, 'uliich is derived from

(10) by an arbitrary odd p>ermutation of the x *s.

To prove this we show, first, that the curve (10) actually

admits the even colliiieations. This cannot indeed be otherwise,

since the curve of the twelfth order remains unchanged for all

the 120 collineations and 12 = 2 . G ;
but we will prove it directly.

We allow starting from any initial value, to vary con-

tinuously in such a way that it assumes successively all the 60

values which proceed from the said initial value by means of

the 60 icosahedral substitutions. Then the point x—since we
are concerned tliroughout with continuous variations—always

moves on the same irreducible curve, while, at the same

* The formulae ( 10) cannot represent some curve of lower order repeated,

for we can calculate rationally from the corresponding 05^*8 .
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time, as we know beforehand, the have undergone at the

end all the even permutations. The curve, therefore, is in fact

transformed into itself by all the even collineations.

We prove, moreover, that our curve cannot admit further

collineations, viz., if this was the case, then would Z (which in

consequence of equation (6) can be represented as a symmetric

function of the //„'s) assume the same value not only in 60, but

in 1 20 points of our curve of the sixth order, while yet to every

value of Z corresponding to the icosahedral equation (9) only

GO values belong.

With this our primary assertion is fully proved. We should

evidently have been able to confirm this by only making use of

the formulae (9) and (10), and leaving aside the consideration of

the sums of the powers and formula (7). In this way we will

now discuss those curves which belong geometrically to what

we previously called the canonical rcmlvcnt of the icosahedral

equation (I, 4, § 12). We have there given a definition of the

roots Yy, which we can here reproduce with the addition of a

factor of proportion p, in the following way

:

(11) pn = m.
+ V2n. ty (;q, z^)

.
{z^, z.^ . z.^)

:

here is the given form of the sixth degree, / and T are the

usual icosahedral forms, and is equal to the following ex-

pression :

(12) \Vy= — — 7 — 7€^z^^z.?

If we now allow to vary, the x^oint Y in virtue of (11)

traces out, as m:u changes its value, an infinite number of

rational curves of the 38th order, among which a curve of the

eighth order for n= 0, and a curve of the fourteenth order for

m=0, are included.* All these curves are half-reyular. They
will therefore be accomx)anied by one of two curves of the same

order, which arise from (11) by an arbitrary odd permutation

of the Yy^. Only when taken jointly—in general, therefore,

a curve of the 76th order—are the two curves the geometrical

* I leave for the time undiscussed whether or no other curves of the

system suffer a reduction of order, and also the question on what—geometri-

cally speaking— this reduction actually depends.
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image of the individual canonical resolvent. We consider,

moreover, that all these curves are situated on the canonical sur-

ffwe ; for Z is in general for the canonical resolvent equal to

zero. The closer investigation of how these curves move on

the canonical surface, and what relations exist between them

and the linear generators of the canonical surface, will occupy

us more in detail in the next chapter.

§ 5. Geometrical Conception of the Tsciiirnhausian

Transformation.

In order now to make the Tscliirnhausian transformation of

the equations of the fifth degree accessible to our geometrical

inteiqiretation, we will, in correspondence with the condition

(1), in consequence of which the sum of the roots of the equa-

tions in question must always vanish, introduce the following

notation

:

(13) • (1 ) j , xj^) - .r
2 _ . (3) = ^.3 _ - (4) = 4 _

(where, of coarse, is only written for Xy for the sake of

uniformity). Then the most general transformation Avhich we
will consider is this :

(
14) Vv^V ' ^

understanding by i), q, r, s any magnitudes at first indeter-

minate.

We have hitherto only considered such expressions as are

transformed into themselves for the particular fundamental

permutations or linear transformations, and which are there-

fore invariants with respect to the transformation group. In a

corresponding sense we could describe the expressions (13) as

covariants of the Xy^, inasmuch as they are permuted simul-

taneously with thfe xj^, and in like manner. I will not explain

further here how we construct geometrically the covariant points

^2
)^ from the given points x=x^^^ in the most effective

manner. On the other hand, I should like to call attention to

the fact that, in virtue of (14), an arbitrary point y will be

constructed from the four fundamental points (xP\ by
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the help of proper multipliers, 77, q, .9, in just the same way
as is usually done in the projective geometry (since the bary-

centric calculus of Mobius). The jp, </, r, s are therefore nothing

else than neio 'projective co-oniijiates of the point y, ichieh arc

'related to covariants of or, to express it in the more sugges-

tive terms of modern phraseology : tiu: assertion (14) denotes that

instead of the original eo-ordinate system of x a typical co-ordinate

system is introdneed^ In the application of the Tschirnliausian

transformation we are concerned with the problem so to deter-

mine p^ (p r, s that the transformed equation in y which results

may have any special properties with respect to the variability

of its coefficients. Geometrically speaking, we must constrain

the point y to move only on predetermined surfaces or curves.

We will therefore write down the equations of these surfaces

or curves, and see how we can find any system of values for

p, q, 7\ s which satisfies these equations.

We have already given in § 2 of the previous chapter some

elementary remarks on the problem here enunciated. More-

over, the distinctions which were just now developed in § 3 will

here be of importance. For it is evidently sufficient, where the

main surface or curve which we are considering is reducible,

to write down the equation of only a single irreducible portion

of the surface or curve. If m is the number oL* those of the

120 collineations by which the portion in question is trans-

formed into itself, then the coefficients of those equations which

we use for the expression of this portion in our new system of

co-ordinates will so depend on &c., that they remain

unaltered for the said ^/^-permutations of the .^’s, and for these

only. The coefficients will therefore only be symmetric func-

tions of the when we have to deal with regular figures, but

two-valued functions (which, after adjunction of the square

root of the discriminant, are rational) when half-regular figures

are considered, &c.

It follows from this that in the solution of equations of the

fifth degree the Tschirnliausian transformation will he only of use

in those cases ivlwre regular or half-regidarfigures are given. For

if we wanted to include irregular figures, we should first have

to adjoin, merely for the purpose of constructing their typical

* Cf, Clebsch, “ Theory of Binary Algebraic Forms,” p. 300, &c.
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equations, such functions of the .-Tp’s that there would no longer

remain a real problem or one which demanded aliy but the most

elementary processes. Here comes into play the somewhat

incidental circumstance that the group of 60 even permutations

of five things is simple, and therefore loses its more distinctive

characteristics by any further adjunction.

§ 6. Special Applications of the Tsciiiiinhausian

Transformation.

In order to determine a point on a given surface or curve

of the order, the readiest method in any case is that, for

which an auxiliary equation of the degree will be required,

of cutting the surface with a known slraiylit line, or the curve

with a plane. For the Tschirnhausian transformation as it is

given by (14), this gives the following general lemma. We
take two or even three sets of known magnitudes

:

Pj, Qit R\^ j ^2 ’ ^3’

and then put either

(15) = Pi I’l + Pi + P2^2» Pj P

^’=pA+pA»
or

(16) ^ = P\P

I

+ P2‘^2 "h P3^3»

If we then introduce these values into the equation of the

surface, or the equations of the curve, as the case may be, we
obtain for pj : pg equation, or for Pi : P2 : P3 a system of equa-

tions of the order
;
each root of tliis equation or of this

system of equations (as the case may be) gives us a Tschim-

hausian transformation of the required properties. The irra-

tionality which is thus required for the production of the

transformation is evidently in general an amssory one. For

there is no a priori reason why the discrimination of the

7i-points of intersection of an arbitrary straight line with the

surface, or of a plane with a curve, should have anything to

do with the distinction of the collineations which transform

this surface or curve into themselves.

It need hardly be said that the general process thus described,
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practically speaking, does not take ns far. If we tried to treat

the different special cases (enumerated in §§ 3,4) of equations of

the fifth degree by its means, we should be brought at once

after the first two cases to auxiliary equations of higher degree

than the fifth. We 'mill therefore -in the seejurt only use our

(jencral process, or sieppose it us(‘d, in order to transform the

r/enerol c(p(ation of the fifth deyree into a canonical Cfpiation,

In fact, we shall afterwards (in the fifth chapter) bring forward

proof that in this special case the general process cannot be

improved, inasmuch as it is in no way possible to get rid of the

accessory square root which is introduced by our process. On
the other hand, we shall succeed in all the other cases in find-

ing more simple methods for the production of the transforma-

tion. These methods were partly touched upon in the develop-

ments of the preceding chapter; we add here a few supple-

mentary remarks.

First, as regards Bring’s transformation, we have stated

already that it is possible, instead of the original system of

equations of the sixth degree with which we have to deal, to

substitute a sequence of quadratic equations and a cubic equa-

tion. We can now, in reliance on our geometrical metliod of

representation, express this much more precisely. The theory

is marshalled in detail as follows. We first of all transform

the general equation of the fifth degree, in the way above

described, into a canonical equation (where we employ a first

square root and an accessory square root). But then arises^

geometrically, the important faet thed through every point on

the canonical surface ptass tu'o linear generators thereof of which

each meets Bring's curve in only three other points. We shall

therefore, in order to pass from an arbitrary point on the

canonical surface to a point on Bring^s curve, first employ

another square root in order to define the generator passing

through the point, and then, in fact, obtain an equation of the

third degree, which determines the points of intersection of

the chosen generator with firing’s curve. It has been already

stated that we shall establish later on (in fact, in the third and

next chapter) explicit formulee for all the steps required for

firing’s theory. We only observe here, therefore, what was for

the most part passed over in laying down the theory, that the

second square root (which defines the two generators of the
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principal surface) is not an accessory one, hut coincides v'ith the

square root of the discriininant of the equation of the fifth derjrcc.

The irrationality which will be introduced by the cubic auxiliary

equation is, on the contrary, again an accessory one
;
the cubic

equation is also in Galois's sense general, i.e., such as possesses

a group of six permutations.

Wo discuss, moreover, the equations of the fifth degree

established by Brioschi, which depend on the Jacobian equa-

tions of the sixth degree. By the existence of Kronecker's

resolvent a method is indicated, as we remarked before, of

transforming the general equations of the fifth degree into

these special ones. In the first place, we have here to deal

with the diofjonal equation of the fifth degree. Our previous

account shows that only the square root of ilie discriminant,

and therefore in no way an accessory square root, is required

in order to turn the general equation of the fifth degree into a

diagonal equation. If we assume an accessory square root, we
can ensure that A = 0 in Kronecker’s resolvent. The corre-

sponding diagonal equation is then essentially identical with

the equation of the ids which we just considered in § 4. The
curve of the ^^^'s was of the twelfth order, or split up into two

half-regular curves of the sixth order. Our general proposition

would, therefore, for this also lead to an auxiliary equation of

the sixth degree after adjunction of the square root of the

discriminant. Nevertheless, as has just been stated, a single

additional square root is sufficient.

§ 7. Geometrical Aspect of the Formation of

Resolvents.

The algebraical principles of the construction of resolvents

have already been thoroughly explained in I, 4 for arbitrary

algebraical equations. Their specification for equations of the

fifth degree needs in itself no corollary. If we return to this

here, it is only to give a new application to our former remarks.

Let us agree, in the first place, that we will only introduce

such rational functions of the £c’s

:

</> (Xq, Xjy X^y X^y Xff
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1

as roots of the equation, as are homogeneous in the
;

if we
then multiply all the by the same factor \ (where the repre-

sentative point, which wo shall call remains unaltered), the

ratios of those values

:

^0,

which assumes in consequence of our permutations, are sliown

to be invariants in every case, and we can therefore, by de-

noting the <^’s as homogeneous co-ordinates, interpret the

formation of the resolvents in a geometrical way. This is a

limitation which we make merely in favour of our geometrical

inteiqiretation
;

it has no deeper significance, and can hereafter

be dispensed with.

Corresponding to the basis of analytical geometry, two possi-

bilities now occur at the outset for the interpretation. Either

we consider the introduction of the as a mere chanfjr, of the

syntein of co-ordinates, or, in Plticker’s sense, as a ehanf/e of the

elements of space. In the first case, the 0's appear directly as

homogeneous, and in general curvilinear co-ordinates of a

point, between which (7^— 4) identities necessarily exist. In

the second case, the 0*s are primarily independent magnitudes,

which we denote as the co-ordinates of any geometrical figure.

The choice of this figure is only restricted by the condition

that its co-ordinates, on the introduction of the 120 or 60

collineations of space which we are considering, exj^erience

just the same permutations as the 0's undergo as functions of

the Putting then the 0's equal to the said functions of

the ^u's, let m establish a covariant relation between such a figure

and the point x. The solution of the equation of the fifth

degree by the formation of resolvents consists, therefore, in

finding first, instead of the point x, another figure covariant to

it, and then returning finally from this to the point x.

In what follows we shall for the most part keep to the

second and more significant representation of the formation of

resolvents, and indeed so much so, that we shall choose it at

once as the starting-point of our further considerations. The

simplest figures of space are, in respect of their exhibition by

means of projective geometry, the point, the plane, and the

straight line. We can consider in their order the resolvents
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which arise when we start from these very figures, using for

our system of co-ordinates the simplest possible.

The consideration of covarimd jyoints, related to th*> original

penfaJtedroit, tells us, of course, nothing new, but leads back to

the Tscliirnhausian transformation already disposed of. We
have only here to introduce p, y, r, s as invariants of the a;’s,

i.c., as symmetric functions of them, or as functions which

remain unaltered for the sixty even permutations. The use of

covariant planes is not more profitable, viz., if we consider, as

we naturally may, as co-ordinates of the plane the coefficients

It of its equation

:

(17) == 0,

where we suppose this equation so regulated by the help of

2'.r= 0 that Xu is also always =0, then to every ’plane there

belongs a covariant point with just the same co-ordinates. This

is its 'pole with respc^ct to the canonical surface X/‘^=0. In

fact, if ,'/q . . . jf

^

are the co-ordinates of the pole (where

the equation of the polar plane is easily found to be

:

( 1 8) 0
Vq + .>•V, + .rV*2 +^>3 + ^'4^4 =

and is therefore identical with (17) if we make the several 'i^^s

equal to the ./j’s respectively. Consequently the same five

magnitudes can always bo looked up either as point- or as

plane-co-ordinates, and a special consideration of the plane as

the element of space is useless.

Thus there remain as the simplest resolvents which we
can consider those which start from a strair/ht line covariant to

the point x. Before I go further into this, I shall make*
a few prefatory remarks concerning line co-ordinates in space

and on the general principles of line geometry
;

first, because

this matter, apart from the sphere of geometry proper, may
still be little known, and also because we shall have to consider,

instead of the usual tetrahedral co-ordinates, a pentahedron,

* See PlUckcr’s “Neue Geometrie des Raumes, gegriindet auf die

Betrachtung der geraden Linie als Raumelement (Leipzig, 1868-69); as

well as the new edition of Salmon-Fiedler’s “ Analytical Geometry of Space.”
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§ 8. On Line Co-ordinates in Space.

The special principle of line co-ordinates in space, which we
can retain as well by the use of pentahedral as of tetrahedral

co-ordinates, was given by Grassmann as far back as 1844 in

the first edition of his ‘‘ Ausdehniingslehre/’ (Leipzig, Wigand).*
Let X, Y be two points on the straight line, ‘then wc consideT

as homoyeneoKS line co-ordinates the entire set of binary deter-

minants, irliich can be constructed with the co-ordinates of these

'points. Let us take first as our foundation, keeping to the

usual mode of representation, a co-ordinate tetrahedron. We
then denote the co-ordinates of X, Y as follows

:

Zi, ^3,
A,; Ti, F

3 ,

putting

(19) p,,=^XJ,^YXk.

we have in the first place

:

(
20

) 2\k=^-Pki,

by means of which the twelve different ^^^^s which occur are

reduced to six linearly independent ones, for which we choose,

say, the following

:

(21 ) i?l3» Puj i^34» ^42» Piy

Between these there then exists in addition the following

easily-proved identity

:

(22) P =i?i22^34 ^PizPri + = 0.

Two lines intersect when a bilinear relation obtains among
their co-ordinates, which we can denote briefly as follows

:

(23)

The summation has here to extend over the six combinations

(21)

. This is clearly not the general linear equation for the

for the are also subject to an identity of the form

(22)

. Understanding by arbitrary magnitudes, and keeping

^Republished 1878.

N
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to the table (21), we will write the general equation in question

in the following form :

(24)
A

^Pik

The asseiriblage of the straight lines which satisfy an equation

of this kind is what Plnclccr has called a linear complex, while

Mohim in 1883 has discussed it more completely. We will not

here concern ourselves with the geometrical properties of the

liiK^ar complex any further. We will only add that we shall

denote the coeflTicicints as co-ordinates of the linear complex,

where we may introduce, if we please, in accordance with

formula (20), beside the a^f^, other symbols a^^

:

(25)

If:

-«Ar

(26) j
+ = 0,

wo can replace the by the formula (23), the

complex is then a special one, and consists evidently of all

straight lines which intersect the fixed line p'. If we combine

by addition two special complexes //, y', and so construct:

we have, apart from pai’ticular cases, a general complex. Every

(jcneral complex can he obtained by adding together six given special

complexes vdth the help of proper mnltiplicrs

;

only the special

complexes must be linearly independent, ix,, they must not

satisfy by their co-ordinates the same linear homogeneous

equation. In this sense, in particular, the six straight lines

are available which form the edges of a tetrahedron.

So much for the usual conventions of the line-geometry.

If we now replace the co-ordinate tetrahedron by a pentahedron,

the only modification is this: that the number of the co-

ordinates appears to be increased, but, to meet this, new
equations of condition occur. First as regards the point co-

ordinates, we have for X, Y now, just as before

:

X,, x^, X,, ^3, X,
,

Y,, r^,

with JX=0, 27=0. But then we have twenty determinants:
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(27)

to disthiguish. We have again, of course

:

(28) P,K=-Pki->

but besides this, evidently

:

(29) 2 Pik = 0, or also2P>k = 0,
t k

where the siiniination extends over those four values of i and k

respectively, which are different from the corresponding k and i.

Besides this, there exists the quadratic relation (22) in addition

to the others which proceed from it by means of (2(S) and (29).

Again, we can also speak of vo^ordinalvn of the linear comple.ic.

There are twenty magnitudes which, while satisfying the

linear relations (28), (29), are otherwise unrestricted variables.

What was said with regard to the composition of general linear

complexes out of special complexes remains valid. All these

matters are so simple that wo can now break off any further

consideration of them.

§ 9. A Resolvent of the Twentieth Degree of

Equations of the Fifth Degree.

Let us go back again to the considerations of § 7. We
wished to consider those equations on which the pentahedral

co-ordinates of a straight line in space depend. We can

evidently, instead of these equations, at once take into con-

sideration the more general ones by which the co-ordinates of

an arbitrary linear complex are determined. We thus obtain

in general equations of the twentuth degree whose roots a^^, in

eonformity to the formulce (28), (29), connected by the follow^

ing linear relations

:

(30) a,k=-akv = =
t k

A certain similarity between these equations and the Jacobian

equations of the sixth degree (in so far as we regard the latter, as

Herr Kronecker does, as equations of the twelfth degree for the

is from the very first unmistakable; we shall learn later

on (in the fifth chapter) the intimate connection that actually

exists in this respect.
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Our business now is to make the magnitudes equal to

proper functions of the rt**s, and to turn our equations of the

twentietli degree into resolvents of the equation of the fifth

degree. The plan is, as we expressed it in § 7, to connect the

linear complex (whose co-ordinates are a^c) with the point x as

a COvariant. We effect tliis in a simple manner if we adopt

tlie methods of § 5. We have there constructed the

as the simplest covariant points of the point x
;
we

shall obtain the simplest covariant straight lines if we consider

the lines which join these points. The co-ordinates 2hk of

line

:

(31)

are linearly independent, for we have to do with the six edges

of a tetrahedron. Therefore we shall obtain the most geneml

values of by comhinincj these pfs mth the help of proper

multipliers

:

(32) =

Here the eh "‘^s are to be introduced as symmetric or as two-

valued functions of the <r^s, according as we choose to consider

all the permutations of the or only the positive permuta-

tions thereof
;
but otherwise they are to be chosen so that the

law of homogeneity that we accorded is satisfied.

§ 10. Theory of the Surface of the Second Degree.

I conclude the present chapter with some remarks on the

institution of parameters for the linear generators on surfaces

of the second degree. The parameters in question are linear

multipartite functions of the projective point co-ordinates.*

We obtain them most simply by bringing the equation of the

surface (as it is possible to do in an infinite number of ways)

into the following form

:

(33) +

If we put then, firstly, in correspondence with this equation

:

The introduction of this parameter is an equivalent, geometrically

speaking, of the projective generation of the two families of ruled lines on

the surface, which, for example, Steiner makes the basis of his considerations.
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(34)

secondly

:

(35)

197

^2

\ remains constant when we move along a generator of one

kind, which might be called the first, while /x remains con-

stant when we proceed along a generator of the second kind.

Therefore /a are two numbers which are characteristic of

the individual generators of the first or second kind, i,c,, they

are parameters wliich can be used to distinguish the generators.

Here we observe that each of the formulm (34), (35), embraces

two equations. We may therefore, without changing the mean-
ing of X,, /X, generalise their definition somewhat. For X, for

example, by combining the two equations (34) with the help of

arbitrary magnitudes p and <r, we can write

:

(36) X =

We succeed in making numerator and denominator of X
vanish together for an arbitrarily chosen generator of the

second kind ;

or

P*

The generator chosen in this manner shall be called the. basis of

the introduction of X.

We will now first consider the behaviour of X, /x with respect

to such space collineations as transform our surface into itself.*

The collineations in question arrange themselves, as is known,

into two kinds, according to their behaviour with regard to the

generators of the surface : either they transform each of the two

systems of generators into itself or they interchange the two

systems. In the first case, to each generator corresponds, in

virtue of the presupposed collineation, one, and only one, gene-

rator X'
;
and conversely, in the same way, to every /x corre-

Consult, say, Bd. ix of the Math. Ann., p. 188, &c. The theorems intro-

duced in the text arc also often used in other departments of modern research.

A more thorough proof would take us too far.
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sponds one /x'. Therefore we kave^ on function-iheory 'pi'incijples,

corresponding to such a collincation, formulae of the following

kind necessarily appertaining

:

(
37 )

\ / oA, •\“h / a

cX + d! ^ c'/x, + d'

In other cases by analogy will be a linear function of /x
;

/x'

such a function of I do not stay to show that these propo-

sitions can also be reversed, and that therefore a corresponding

space collineation is obtained if the formulas (37) [or the corre-

sponding ones in which \ and p are interchanged] are written

down quite arbitrarily.

We remark, moreover, that the /x^s furnish a determina-

tion of co-ordinates for the points on our surface."^ In fact, at

every point one generator of the first kind and one of the

second intersect, whose p we can transfer to the point. It

is here to the purpose to replace A by : X
2 , p by p^ : p^, to

make them homogeneous. An algebraical equation

:

•/ (^v ^2 >

homogeneous and of degree I in Xg, of degree in /x^, /Xg,

then expresses a curve of the order lying on the sur-

face, which intersects a generator of the first kind 7?i times

and one of the second kind I times. We can now combine

(34), (35) in the following manner:

(39) : ^2 ; X,^ : X^ - \p^ :
- X.^/Xj : X^/Xg : Xo/x.,.

Introducing these values of the X*s into the equation of a sur-

face of the order :

(
40)

F{X^,X.,,X,,X,)=^i),

we recognise that our surface of the second degree is inter-

sected by (40) in a curve which, written in a form (38), is of

the degree both in the X^s and /x’s. Conversely, too, by

means of formula (39), every curve (38) which is of equal

degree in the X, /x’s can be represented as the complete inter-

* See Plucker in Crellc’s Journal, vol. xxxvi (1847). The discussion of the

curves (38) was undertaken in a systematic manner almost simultaneously by

Mr. Cayley and by Chasles (1861) ;
see Phil. Mag., vol. xxii, also Comptes

Rendus, vol. liii.



INTRODUCTION OF GEOMETRY 199

section of the surface of the second degree with an accessory

surface (40).*

We determine, finally, the line echonUnates of the generator

ft, retaining the tetrahedron as laid down in (33). Putting

first then ^*2= 0 in (39), we obtain for two points lying

on the generator \

:

.Y^:J5r,:Z3:jr, = 0: 0 : : X,

respectively.

Hence we calculate by (19) for the which belong to

them the following relative values

:

(41) 2h2 “ Pu “ ^1^2» P34 “ Pi2
~
^2^ P23

~ ^1^2*

Analogously we get for the jm-generator

:

(42) 2hi = 0, Ihi = P4^2 = P23 = Pith-

We now assume that the equation of a linear complex is intro-

duced, which runs as follows

:

= 0 .

By inserting herein the expressions (41), (42), we obtain the

two following quadratic equations :

(43) + (^23 ~ ^14) + ^13V = 0,

(44) - ^34/h^ + (^23 + ^m) P1P2 + ^12^2^ =

lienee

:

In general to a linear complete belong twOy and only twOy gene-

rators of each system.

But it may happen that one or other of these equations

* I might perhaps add one remark, which is not immediately connected

with the text, but rather reverts to the developments of the first part, viz.,

this: that lliemann’s interpretation of x-{-iy on the sphere can be applied as

a special case of the determination of A, ^ co-ordinates spoken of in the text,

namely, since all the linear generators on the sphere are imaginary, two con-

jugate imaginary generators intersect in every real point thereof. If we now
introduce \, properly, and call the A, which belongs to a real point on the

sphere, x+ iy^ then the corresponding will be yc -- iy. For fixing the real pointy

therefore^ it mffices to give only one value^ x-\-iyi and this is just the method of

Kiemann, which, however, I cannot here work out in detail. Cf, Math.

Annalen, Bd. ix, p. 189 (1875).
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vanishes identically. This gives three linear conditions for the

u4ffc’s, so that three of these still remain arbitrary. Hence

:

Tlie generators of the first and second kind on our surface

belong each to a threefold linearfamily of linear com'plexjcs?^

I must pass over the actual establishment of the equations

of these families.

* Cf. throughout Pliicker’s “Ncue Geometrie des Raumes,” &c.



( )

CHAFfER III

THE CANONICAL EQUATIONS OF THE FIFTH

DEGREE

§ 1. Notation—The Fundamental Lemma.

The new chapter which we now begin is to form in every

respect the centre of our developments. We treat of the

canonical equations of the fifth degree and their simple rela-

tions to the icosahedron. Here we borrow from what precedes,

especially from the Bring transformation, the one fundamental

idea of considering the reciiliiieal generators of the canonical sur^

face. I denote here, as I did there, the canonical equation of

the fifth degree as follows

:

(1) + 5ay2q. 5/^y+ y = 0,

where the factors 5 for a and p respectively are applied for the

sake of convenience. I will also communicate at the outset the

value of the discriminant. Using the somewhat long formula

which we frequently find* given for the discriminant of the

general equation of the fifth degree, we have for (1) :

(2) n(y^^2/,)2==312.V,

where ig put for brevity in place of the following expression

:

(3) =• lOSa^y - 135a4/^+ 90a2/?y2_ 320a/33y+ 256/?5 + y\

We now at once proceed from the developments just given

(in the concluding paragraph of the preceding chapter) by
supposing the two different generators of the canonical surface

to be denoted by parameters A, /Ji. Let

:

* Cf. e.g.y Fad di Bruno, edited by Walter, “ Bnleitung in die Theorie der

binaren Formen ” (Leipzig, 1881), p. 317.
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(
4
) //o* Vv 3'2» ^31 Vi

be the roots of (1) in a definite order. We then suppose those

60 generators A and 60 generators fji constructed wliich contain

one of the 60 points of the canonical surface, whose co-ordinates

proceed from (4) by an even permutation of the y’s. The A, /Tb

are, as we know, linear fractional functions of the y’s
;
the 60

values of A or (jl in question therefore depend on an equation of

the 60th degree, which is a rational resolvent of our principal

equation, and tlie coefficients of which are accordingly rational

functions of the a, y, y. Noio I assert—and here we have

the particular lemma recjuired for our further developments

—

that our resolvents of the 60^A degree^ for an aiipropriatc intro^

duction of the A, [xs, are necessarily ieosahedral equations, and

therefore will admit of being written without more ado

:

(5)
1728/5 (X) 1728/5 (/x)

2*

where alone depend on a, y, y.

The proof presents itself immediately on the grounds of our

previous data. We have just divided the collineations of space

which transform a surface of the second degree into itself into

two parts, according as they transform the individual system of

generators into itself, or interchange it with the other system.

Now the canonical surface of the second degree passes into

itself for the 120 collineations of space which correspond to the

permutations of the y’s. We will at first leave undetermined

how the systems of generators of the surface behave towards

the totality of these collineations. If all the collineations were

not to transform the individual system of generators into itself,

at all events half of them would necessarily do so. This half

of our collineations must here necessarily form a group qier se,

and indeed a self-conjugate group in the main group
;

it can

therefore only consist of the even collineations. Hence, in any

case—and this is a first result—the 60 even collineations have the

ptroperty of transforming each of the two systems of generators of

the canonical surface into itself We now recall that, in accord-

ance with the formula just given in (37) [II, 2, § 10], the para-

meter A, as also the parameter p,, experiences on its part a linear

transformation for each collineation of this kind. The 60 values
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A, which satisfy our resolvent of the deyree, therefore depend

on each other as linear functioius vjith conMant coejjjicients (ami

similarly the corresioonding values of or the equations for X

ami [x are transformed respectively into themselves by a group of

60 linear substitutions. But hence the accuracy of our asser-

tion follows immediately in virtue of the developments of I, 5,

§ 2, as soon as we add that the group of the linear transforma-

tions which X or p experiences is simply isomorphic with

the group of even permutations of the y^s. The unknowns
A, p, which occur in the canonical forms (5), are here proper

linear functions of the original parameters denoted by these

letters
;
we will call them the normal not for-

getting, however, that they can be chosen in sixty different

ways in correspondence with the 60 linear transformations

by which each of the equations (5) is transformed into

itself.

Having thus proved our primary assertion, we can go a step

farther in the same direction. I say first, again taking up the

question just mooted, that for each uneven collineatiou the two

systems of generators of the canonical surface are necessarily inter^

changed, namely, if the individual system were transformed

into itself for the whole of the 120 collineations, a group of

120 linear substitutions of a variable would be given, on the

grounds of the formula (37) just cited, which would be simply

isomorphic with the group of 120 permutations of five things,

which, however, by I. 5, § 2, is impossible. If, therefore,

we have represented A (the parameter of the generators

of the first kind) in any way as a fractional linear function

of the y’s, we obtain a parameter p of the generators of the

second kind by subjecting the y’s occurring in A to any uneven

permutation. In j^ecrticular, ive obtain the sidy normal values

of p if we apply to one of the normal valnes of X the whole of the

itneven permutations of the y s. For these uneven permutations

the coefficients a, /?, y, of course remain unaltered, while v
changes its sign. The magnitudes Z^, occurring in the

equations (5), only differ^ therefore, in the sign of We can

give this theorem another application by introducing the sixty

points y\ whose co-ordinates are derived from the scheme (4)

by uneven permutations of the y’s. We have, namely, for

the representation of the generators of the first and second kind
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iuliicli jjtuis tkrolujk these points^ the follovnng equations respec^

lively

:

(
6)

^(A)
1728/>(A) msfi,.)

§ 2. Determination op the Appropriate Parameter A.

The formula) which we will now establish for the normal A

are in themselves peculiarly simple and easy to verify. If I

nevertheless devote some space to deducing it, it is because

I again wish to derive each individual result from reflexions

which involve no computation.

As the gencmting opcratiotis of the icosahedral group we
have previously (I, 2, § 6) found the two following

:

(7)

I

• ~ (c2-e3>^.(e^V)‘

We saw, further (I, 4, § 10), that the octahedral forms are

permuted as follows with respect to these substitutions

:

(
8) \T \ Iq = ^ 2 “ f

' — f f
' — fh U ^ ^3*

The same formulas of permutation hold good for the roots

I first gave the reasoning developed in the text (as well as the corre-

sponding formula of the two following paragraphs) in two communications to

the Erlanger Societat on November 13, 1876, and January 15, 1877 [“ Weitere

Mittheilungon liber das Ikosacder I, II”]. I will now append, besides, the

case of the equations of the third and fourth degrees for comparison. Let us

denote the three roots x of an equation of the third degree having 2a; =*0,

in accordance with what has gone before, on a straight line. Let us then

denote an arbitrary point of this straight line in the usual way by a parameter

\ ; then X, for the whole of the six permutations of the ac’s, experiences linear

substitutions of the dihedral type, and satisfies, when properly prepared, a

dihedral equation of the sixth degree.

For the equations of the fourth degree we transfer the geometrical repre-

sentation to the plane, and add to the condition 2(a;)= 0 the second one
2a5*=s0, confining ourselves therefore to ** canonical equations.” We again

represent, in the usual manner, by a parameter \ the points of the selected

conic. This parameter then undergoes linear substitutions for the whole of

the twenty-four permutations of the ac’s, and therefore satisfies, when pro-

perly prepared, an octahedral equation (or, after adjunction of the square root

of the discriminant of the equation of the fourth degree, a tetrahedral equation).
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of the several resolvents of the fifth degree for the icosahedron

which we there established (I, 4), and in particular—a point to

which we shall soon return—for the roots of the canonical re-

solvent. We shall want to arrange our new formulae so that

they fit in with those there given as closely as possible. We
shall therefore so ehoose the normal \ from among the sixty values

of the parameter irhieh. come under eonslderat iou, that it undergoes

exactly the suhstitutvpus (7), if tee Huhjert the y\^ to the tiro ‘per-

mutations indicated by (8).

The value of \ is fixed hereby, but not so its form as a

function of the y’s. First, we have yet to decide which

generator of the second kind we will make the basis of the

introduction of X in the sense previously explained (II, 2, § 10).

Secondly, we can modify niimeral or and denominator of X by

addition of arbitrary multiples of Sy (which is identically= 0).

In both respects we will make definite conventions.

For each linear substitution of X or /a two values of the vari-

able, ix,f two generators of the first or second kind respectively

remain fixed. Wo consider now in particular the operation S,

and make the basis of the introduction of X one of the two

generators of the second kind which remain fixed under its

action. Lot \, on this siq)position, where and q denote

two linear functions of the ys. On effecting in py q that per-

mutation of the 2/’s which is likewise indicated by Sy p'y q arise.

Here = ^'= 0, have by hypothesis the same straight line

in common as = 0, <7
= 0; therefore for any y :

p ^ap-{-hq-\-m ,

if = cp 4. dq + n . 'Ey
y

but^, =\' is, in accordance with formula (7), to be equal to eX

for all points of the canonical surface
;
and the points of the

canonical surface are not distinguished from the other points of

space by any linear relation among the co-ordinates. Hence

the foregoing equations are necessarily transformed into the

more simple

:

p' = €d , p-\-m .

= d . q+ n .

where rf, m, n are primarily unknown. We can modify these

equations as follows

;
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We shall now be able, without affecting the equation \=^, to
Q

denote the expressions I- • Sy, q 4-
y .

Xy, which occur,

in a concise manner, by q. Then we have simply

:

(9)
p/-€^ ,2>y

Xq'^d.q.

The result of this reflexion is thus as follows: vx can and
this in two ways (since one of two generators of the second kind

had to be chosen), onr in such wise tltafy after ap'plicafion

of the perm utation iS to the y^s*, the equation (9) is identically true.

Now, however, it is known (and, moreover, easy to prove)

that, for the permutation S of any magnitudes ?/, no other
linear functions of the ^/’s alter only by a constant factor save
multiples of the expressions of Lagrange

:

' P\ = 2/o + + ^^2 + ^^3 +

/ 1 0)
.

^2 "" + €V2 +% + ^^2/4^

7h == 2/0 + ^*Vi + €^2 + ^^3 +

. lU = 2/0 + + €
2/4 »

with which Xy, as an expression which remains entirely un-

altered, would also be associated were it not in our case

identically zero. As regards the changes of the p^Js for the

permutation /S^, =
, Pf^. Hence the only three expressions

for X which satisfy the relations (9) are the following :

(
11 ) A, = c, . A, = C9

P2

of these expressions, the first and the third are available, but

the second must be rejected. It can' be shown, namely, that

the line of intersection of = 0 and p,^ = 0, as also that of j^3=0
and jl^

4
= 0 ,

belong, in fact, to the canonical surface, but not the

straight line 2?2= 0» = This is best proved by introducing

the^;fe’s in place of the yj& in the equation of the canonical

surface. We have from (9), on joining thereto Sy=:0:
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(
1

2

) fiy, = 4- + €7?
4 »

and therefore

:

25-//^=10(/>ijP4+7>2M

so that the equation of the principal surface, relatively to the

co-ordinate system of LagrangCy will be the following

:

(13)

whence the accuracy of our statement follows directly. From

(13) it follows, further, that

:

Ih Pa '

if therefore, we 7??//, eorresgmuling to the first formula (11 ),

\=e. . we must also mit it —e. .

It will now only remain to determine the factor e which

occurs here. We construct X' by submitting the i/h to the

permutation T, according to formula (8 ), and then inserting it

in the corresponding formula (7). The equation thus arising

cannot be an identity, because the generator of the second kind,

which we used in establishing the X, does not remain fixed

under the action of T, It must, however, be a valid equation

if we take account of the relations 2'y= 0, = 0. We obtain,

on comparing the proper terms on both sides, the value — 1

for Cj. Hence our normal X is determinate

:

(14)
Pi Pi

in exact agreement with the value which we had adopted for

the parameter A in the concluding paragraph of the preceding

chapter (formula (34)).*

* If we wish to establish in a similar manner for the equations of the

third and fourth degrees, which we just mentioned, the roots of the dihedral

equation and octahedral equation respectively, we obtain accordingly

:

X= + and X= _ - (xp-f Pxj+ i% )

where so that, therefore, the quotients of the expressions of

Lagrange are here also introduced.
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§ 3. Determination of the Parameter fi .

The normal parameter which we had in view for the

generators of the second kind, was to proceed from the para-

meter X by means of an uneven permutation of the ?/’s. We
satisfy this requirement if we take, again in agreement with the

concluding paragraph of the preceding chapter (formula (35))

:

(15)
ih Pii

In fact, this value results from (14) if we replace
^/i, ?/2 , 2/3 ,

yv 2/4 ’ 2/2 respectively, and thereofore permute
z/^,

v/
3, y^, y^

cyclically.

But now we can evidently deduce the formula (15) from

(14) in yet another way, viz., by replacing in (14) e by

throughout. This change is then, of course, carried over to

the substitutions aS^, T (7), and the icosahedral substitutions

arising from them. The suhst Untions, therefore, 'irhieh fx and

X mideryo for the cmi periUKtations of the ys, thouyh hyno means

uientieal iiuHviduallyy are so, at any rate, in their totality ; or

rather ive derive the one set from the others by ekanyiny e into

throuyhout, a theorem which is fundamental in what follows.

In agreement with this we obtain, on applying to the (jl the

operation mentioned, not X again, say, but — This is that

value which arises from X in virtue of the icosahedral

substitution denoted previously by U, To it corresponds

the simultaneous interchange of y^ with y^, and of

with y^.

We will further adopt the formula (39) of II, 2, § 10. In

virtue of this we now have, on replacing X by X^ : X^, [x by

jx^ :
/ig

:

(16) n-Pi-Pa'- i’4
= = -Vi : ^iP-2 V2.

or, on introducing a proportion-factor p :

(17) pj/y= €^'’
. A,j/4, - + e2» . + 1'

.
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§ 4. The Canonical Resolvent of the Icosahedral

Equation.

Having found tlio normal parametors A, for any canonical

equation of the fifth degree, we will apply our formula) in par-

ticular to tlie canonical resolvent of the fifth degree, which we
previously constructed, IV, 1, § 12, by supposing any icosa-

hedral equation

:

(18)
1728/^ f:,)

to be given. We obtain in this manner a peculiarly simple

result, which is of the greatest importance for the further pro-

gress of our development.

The canonical resolvent was defined by the formula)

:

(19)

where

(
20)

Yv —m . v„ + n . u,.‘ih;

12fKf.y 12/. m

understanding by/, H, the ground-forms of the icosahedron,

fcy ivi the oft-mentioned forms of the sixth and eighth

degrees. Let us now consider that we can write Wv and fv W^,

in the following manner

:

(
21 )

= +
+ + ez,^) ( - V

(22) U Wy -= (c^-^j - (
_ 2621^V + 39;SjV + ^

2
'*")

+ + €‘'2J.^) (
— z^'^ + \\^z^z.^ + 26;^!%^^).

Hence in formula (19) assumes the following form

:

(23) Yy = — £3^2^) II + + S,

where R, S are linear functions of ??/, n. The expressions of

Lagrange (which we here also denote by capital letters) become

therefore

:

(24)
/Pi= bz,,R, P, = bz,.S,

Hence we get simply :

O
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(25) /.-I

We have therefore at the outset: The ixtraineter A is identical

with the n'idcnovni z^:z^ of the oricjinal ivomhedral equation, or

expressed geometrically : The point

(20) yv —m . Vy{X) + n . Uy(X) .

lies on a (jenerator of the first hind, whatever m and n way denote.

If we here consider A as a variable magnitude, the point y„, as

we saw in the fourth paragraph of the preceding chapter, tra-

verses a half-regular rational curve, which is in general of the

38th order. For the proof of this, we had replaced the formula

(26) by the following (a proportion-factor p being introduced)

:

(27) TF. (X,, A,) . T (X^, X^)

+ 12n
. (\, X,) . TFKXj, X^) .f (X,, X,).

We now recognise, first, we may cursorily remark, the reason

(geometrically speaking), why the order of the curve thus ob-

tained can sink to 14 for m= 0, and to 8 for ^i= 0. It is he-

cause, in the first case, the aggregate of the 12 generators of

the first hind f{X^, A
2)
= 0, counted twice, is sciMrated from the

general curve of the 38/A order; in the secoml ease the aggre-

gate T{X^, A
2)
= 0, eonnted once. But we have now, besides,

the following theorems for our curves (27). We find that our

curves meet the generator's of the first hind only once, and therefore

the generators of the second hind 37 times. In fact, we have for

every generator A by (27) only one point of the curve. We
find, moreover, that through every point of a generator A only one

curve (27) qmsses, so that the canonical surface is covered hy the

family of curves (27) exactly once. The individual points of the

generator A, viz., are given by the corresponding p, which deter-

mines the generator of the second kind which passes through

the point. But if we suppose A, p in (25) to be known, the

corresponding m : n is computed linearly.

We append to this two further remarks which will be useful

later on. First, as regards m and n, we can compute these

linearly from the y^H previously given in accordance with

formula (26), not merely relatively, but determining their

absolute values. These formulae are not altered if we permute
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1

the evenly in any way. For by the agency of the icosa-

hedral substitutions of A, the /^(A)'s, i^„(A)’s occurring on the

right-hand side always undergo the same even permutations

as the ?/v’s placed on the left side. 71w m, n fliereforc depend

mtionaUy on the y^s in sueh vmc that they mnaiii v nattered for

even ^yerinutations of the y^s

;

or, to express it otherwise, the

m, n arc eajxMe of rational rep>reiientat ion as funetions of the

given magnit tales a, /3, y, V* We consider further the relation

between A, p whicli is furnished by the formula (25). If we
subject A to any of the icosahedral substitutions, the /i, inas-

much as it depends on the corresponding Yv^ (exactly in the

way we saw in the preceding paragraph), undergoes other

icosahedral substitutions which proceed from the given ones by

changing e into e®. Following the terminology which was

introduced in this connection hj Herr Gordan, we will describe

the changes of p as contragredient to the changes of A. The

fonnnlm (25) proviile us with infinitely many rational functions

of A which, in this sense, are eontragrediently related to A.*

§ 5. Solution of the Canonical Equations of the
Fifth Degree.

We have already, in §§ 1, 2, given the means of reducing the

solution of the canonical equations of the fifth degree to an

icosahedral equation ;

(28)
1728/^(X)

by determining A as a functon of the y’s. If we now wish to

express conversely the yv^ by means of the individual root A,

we can evidently employ the equation (26). I will now write

it so that m, n are provided with an index 1, so that the con-

* The theorems proved in the text, as well as the principles for the solu-

tion of the canonical equations of the fifth degree to be developed immedi-

ately, were brought before the Erlangen Society by Herr Gordan and myself

simultaneously on the 21st of May 1877. Herr Gordan there started from
essentially different points of view from those to which we afterwards return.

My own exposition, too, was in some measure different from that now given

in the text, and in many respects less simple. Cf. here throughout my com-
prehensive memoir, “Weitere Untersuchungen iibc*r das Ikosaedor,” in Bd.

xii of the Mathematische Annalen (August 1877).
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nection of our formula with the icosahedral equation (28) may
be evident. We have then :

(29) 1/v = mj . A.) . i;„(X)

;

when we afterwards consider instead of A, m^, ti^ will

have to be simultaneously transformed into Z^y mg, Ifi order

t/iat the Hohdinii of ilw cationmd equation by the helj) of the

icosahedral equation may he eomplete-y 'ire have evidently only

to further determine the Z^y as rational functions of the

magnitudes ay /3, y, inrmously given.

We shall see later on how the calculation thus required can

be carried out a p^riori. In the meantime, let us follow a much
more elementary method. We liave in I, 4, § 12, explicitly

computed the canonical resolvent of the icosahedral equation by

considering Z, m, n, as arbitrary magnitudes, and in § 14 have

given the corresponding square root of the discriminant. It

now follows from the considerations of the preceding paragraph

that every canonical equation of the fifth degree, after a fixed

value has been determined for y, admits of being put, in one

way only, into the form of the canonical resolvent. We shall

therefore he able to determine Z^y m^, in a rational manner hy

simply comparing the coefjieients of the general canonical resolvent

and the square root of its d'lseriminanl with the coej/irients a, P, y,

of the given canonical equation (1) and the adjoined value of the

corresponding y- We will here always define y, as we did in

I, 4, § 14, in the following way

:

(30) 25V5,y =

which is reconcilable with the formulae (2) and (3) of the

present chapter. Comparing now, first, only the two sets of

coefficients, we obtain

:

(31)

Z, a = 4- 1

+

^ •P ^ A 4 .
+ 4mw® 3w^.

+—iZz-‘^4(r-Z)2’

A' • 7 _ Aft 5 40??eV 1

3
“ " “ T-z -(1 -Z)^ •

I have here at the outset written Z, wz, instead of Z^, m^,

n^y because Zg, mg, 71^ satisfy these equations equally well.
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The further computation now takes the following form.*

From the first of the equations (31) we obtain

:

(32) ~l2a

On the other hand we form :

(33)

and hence

:

« 9 A , Y
’"y + 1 _ jg- l - 'z)

’

[ •-sr j^)‘,

^ 1-z
18

. (3ma+2P)^ = |(my- j’^).

We need only introduce here the value (32) of
^
—

y, in order

to obtain for m a quadratic equation. If we rearrange this by
multiplying up by the denominator, we have

:

(34) 16m2 {a* - 13^ + al3y) - |m ( 1 la*/J + 2/3*7 - “7*)

+5(64a2/3i - 27a»7 - /Sy*) = 0.

On solving this we find :

(35)
( 1 la^/I + - ay^) ± ay

24 (a^ - + ajSy)
*

where exactly agrees with (3) (as we may verify), and the

sign ± remains for the time, of course, undetermined. With
this value of rn the other unknowns are at once determined too.

First, as regards the value of Z, it is sufficient to introduce the

value of ^from (32) into the first of the equations (33) ;
we

thus find :

/36^ y- (4:8a»i*-12^m-y)*
' ^ 64a*[12 (ay - tn - fiyj

*
I borrow the process of elimination used in the text from a lecture of

Gordan’s in the winter 1880-81. Herr Kiepert has also similarly employed

the comparison with the canonical resolvent ("Auflosung der Gleichungen

ftinften Grades *’) in the Gkittinger Nachrichten of July 17, 1878, or Borchardt’s

Journal, t. 87 (1879).
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We obtain n in s, corresponding manner if we write the

first of the equations (31) as follows

:

^
n = aZ-Sm^ -Qm

,
^

and now consider m and Z as known. The final formula is

:

/owv + 7 + 6ym - 1 2a^Z
' ^

n-
f44^m2 + 12;8m+^

*

In order now to determine the sign of y in (35), and there-

fore in (36) and (37), in a way corresponding to the priority of

the X and the notation 7?.^, Zj^^ let us compare (30) with the

difference-product of the principal resolvent previously noted.

It here suffices to consider a special case. We take, say, m= ly

71= 0, in the general principal resolvent, and therefore have,

in consequence of the formula (31)

:

8 .. 12
“-2-

lU
Z •

At the same time we obtain by I, 4, § 14

:

JJ (n - r^) = - 25

V ^v

and thus by formula (30)

:

1^(1~Z)

Now, by formula (35), the m becomes in this case

:

-11 -

3

. 1^’^
.

2^2-7. 123. Z 5

therefore if, as we assumed, m is to be equal to 1, we have to

apply the lower sign in (35).

Thus we have in general

:

(38)
(1 la^13 + 2l3^y - gy’) - ay

24 (a^ - + oipy) ’

a'fid hence by (36), (37), the Z^ and n^. The corresponding values

of 77i2» ^*'2 proceed from this by reversing the sign of V
throughout.
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§ 6. Gordan’s Process.

The method just developed for the computation of m^,

has the advantage of working throughout on elementary lines,

and with the use of results previously deduced. It cannot,

however, be denied that a certain amount of skill, though of a

very simple kind, is required to introduce the right combina-

tions of the equations (31 ), and that, therefore, this method

does not lit in well with the mode of exposition which we
liave otherwise maintained, in which we have endeavoured

always to see before commencing the results of our computa-

tions in their main outlines. I will therefore briefly go into

the features of the computation originally given by Herr

Oordan, and this the more readily because certain other aspects

are connected with it which are of use for our main conception

of the problem of solution.* Let us first make clear the

difficulties which oppose a direct computation of the magni-

tudes We had, for example, the defining equation

:

^ 1728/'>(A/

where we may substitute for \ the one value

:

Vi

Then we have in Z^ a rational function of the five roots

2/0 • • • 2/4
before us which remains unaltered for all even per-

mutations of the y^s. But now this latter only occurs because

the y’s are connected by the equations of condition 5'y= 0
,

2'y^= 0
;

it does not occur if wo consider the y’s as arbitrarily

variable magnitudes. To express it otlierwise, Z^^ is for the

even permutations of the y’s aducdly^ though not formally,

invariant. Now all rules which we meet with in tlie usual

expositions on the computation of symmetric functions, &c.,

relate to functions of formal symmetry; these rules are,

therefore, not immediately available for our purpose.

* Cf., besides the note just mentioned, a communication of Gordan’s to

the Naturforscherversammlung at MUnchen (Sept. 1877), as well as the

larger memoir, ** Ueber die Auflbsung der Gleichungen vom funften Grade,”

in Bd. xiii of Math. Annalen (January 1878).
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Hoit Gordan Biirinouiits this difficulty by satisfying the

equations of condition Sy==0, 5'/y“=0, in a general manner by

functions of independent magnitudes. He then has henceforth

to do altogether witli functions of iiuh'pcndeat variables, and

can establish for them an algorithm which is analogous to a

certain extent to the process already mentioned relating to

symmetric functions.

The independent variables from which Herr Gordan starts

are essentially none other than the liomogeneous parameters

Xg* E'v E'r have above already expressed the ratios

of the y?fc*s, and, on the other hand, the ratios of the in

terms of these magnitudes [formula) (16), (17)]. Herr Gordan

renders the formula) in question concise by supposing the

absolute values of the A, determined appropriately, and

writing accordingly as follows :

—

(39) Pi = 5Xi/Xi, ^ Ih = lU =

whereupon becomes equal to the following expression

:

(40) y,, = . A,/ii - €3*^
. . Aj/x^ + €»'

. A.^/i^.

Before going further in the description of Gordan^s process, we
will express all the iiiagiiitudes, given and required, by the

A, /x’s thus introduced. I first bring together the formulae for

the coefficients a, y of the proposed equation of tlie fifth

degree and the corresponding p. We have :

(41)

(42)

fl= = - Aj

+ A2ViV2»

(43) 7 = ^ + lOAiUo/XiVi'- “ lOAi'U/pi/Xjj^

- 10Ai2A//XiV2~ lOAiA/piV/ + A/(/Xi5 - ^^5)^

yy _ V-<y {Vv ~ l/y')^
25 V5

(44)
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= _ ^^10) + x,/«( - - 1 l^.V/ +
+ X^\{25ix,W - 50,^1V) + V( - 50/.1V - 25^0^V)
+ Ai8A/( - 75m,

V

a* + 25m,

M

i*) +W(“ 25miV., " 75m,V.'‘’)

+ A,^A/( - 5OM1V2- ISOmiV/) +W( + I5OM1V2"- 50/I,M2*)

+ ''
1'VU^OmiW + 75M1V2*) + ^

1*V( + 75miV/ - ISOmiW)
+ A,5A/( 1 1m,i®- 504m. ^Mi'*

- 1W^)’

Of the magnitudes required, is known to us immediately

as a function of the A’s :
*

(45)
H\Xy,\)

1728/®(A„ X,)’

but tlie TO,, M, also readily admit of representation in terms of

A, fi. If we introduce, viz., into the defining equations

:

or:

2/^
= mi . v,{\, AJ + », . u,{\, AJ . Vy{\, A^)

2/^= 12m, 144«,.
A„1

f{KK)-UK K)-
//(A,, A,)'. r(A,, A,)

the values (40) for the y,’s, we get on solution:

(46) m, = M,

12/(Ai, A,)’ 144 ./>(A„ A,)’

where M^, JV,, denote the following two forms, linear in m,, F2 •

(47)
V- 26VV")

‘ \ -Mi(2GA,‘«A/-39Ai®A/-A2>®)

(48) iV, = Mi(7Ai*A/ + A/) + Mi(- + 7A,*A/).*

We have now to represent the magnitudes

rationally in terms of a, jS, y, p, on the basis of the formulae

(41)—(48) now giveiuf

* The magnitudes Zg, wig, Wg, which are associated with Zj, wij, nj, are

omitted for the sake of brevity.

t As a verification of the expressions furnished for ATj, we may observe

that the determinant

8Mi

5fj.j

dN^ Ml
5/*i 5^2

is simply equal to ir(Xx, Xg).
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§ 7. Substitutions of the A, //'s—

I

nvariant Forms.

We must now become acquainted with the changes to

which Ag, fJLi, /^2 are subject when the ?/’s are permuted.

These changes are not. however, iier sc\ completely determined.

For of the four magnitudes A, /i, one is superfluous, even if we
take account of the absolute values of the 7/„'s. We found

above that, for the even permutations of the yjs which we

denoted by aS^ and 7\ ~ undergoes the icosahedral substitutions

so named, while is subjected to substitutions which are de-

rived from these by transforming e into We further

remarked that ^ proceeds from by the cyclic permutation

(l/v Va* Vv %)» ^ repetition of this operation - is
Ai

derived from On th) basis of these theorems 'ire shall now
H

define for Ap Ag, hor,to(jeneous linear substitutions of deter-

nnnant 1, in such wise tiled conversely from it, in virtue of (40),

the proper pcrmutatmis of the yfs follow. To this end let us

first put, employing homogeneous icosahedral substitutions of

determinant 1

;

(49) aS : A
j
— c^Aj^, A

^ — *“A2
j /^2 “ »

'

n/5. A'i=-.(€-€»)Ai + (€2-€^)A2,

(60) T -
Vs •

^'
2 = («'- «"’) ^1 + (« - '^) K ;

where the formulae for the /i’s again proceed from those for the

A’s on replacing e by

Applying these substitutions to (40), there follows in fact

necessarily

:

S:yf
T

: Vo =
2/u. Vi = .'/2. y-i’ = y> Vi = Vv W = Va-

Here - €» - c*, as must not be overlooked, changes its sign.
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Hero the permutations of the y's which arise by composition of

S and T are, of course, only hemihedrically isomorphic with

the corresponding substitutions of the A, /^’s: tliere are 120

substitutions of the A, //*s, and only 60 permutations of the y's.

This circumstance is explained by the fact that, among the

substitutions of the A, /^*s, the following is found

:

Aj = — Aj, A^ = — Ag, /Xj, = “ /^2*

for which the y^^’s remain altogether unaltered as bilinear func-

tions of the A, /^^s.

We proceed to introduce the following substitution, which

we describe shortly as an interchange of A and :

(51) /Aj = Aj, = Ag, Aj ~ fi2f A2 =

From the formula (40) we then get

:

Vv^^Vlv,

therefore, in fact, the uneven permutation of the ?//s pre-

viously employed. In agreement likewise with what precedes,

we get on repetition of (51)

:

Aj = Ag, Ag = - Aj
;

/Aj = ^g, /Ag = — fx^,

i.e., the homogeneous icosahedral substitution otlierwise de-

noted by IT,

Instead of the two-valued or symmetric homogeneous func-

tions of the we shall now fix our attention altogether on

such rational and, in particular, integral homogeneous functions

(forms) of the A^, as remain unaltered for the substitutions

(49), (50), and (51) respectively. If this is only the case for

(49) and (50), they are to be called invariants simply, while we
will speak of complete invariants if invariance also occurs for

(51). It may happen that an invariant merely changes its sign

for (51) ;
we then call it alternating. If an invariant is neither

complete nor alternating, it will, in virtue of (51), be co-ordi-

nated with a second. The relation of the two invariants is

then mutual, for the repetition of (51) is an icosahedral substi-

tution, and therefore leads back to the original invariant.

Evidently a, /3, and y are complete invariants, y an alter-

nating one. The forms which we have elsewhere used, / (Aj,

Ag), H (Aj, Ag), T (Ap Ag), represent the more general
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type. Calling the first three H^, T^, for the sake of ioFSTlty,

the forms which are derived by interchange of A and fx shall be

denoted by/g, N^.

§ 8. General Remarks on the Calculations which we
HAVE TO Perform.

The statement of the question given in § 6 requires that

certain rational invariants shall be expressed rationally in

terms of a, /3, y, f7.
To this end we may first ask : what

integral invariant functions (forms) are integral functions of

Pj y* F ? Evidently all those, and only those, which are

integral functions of the But these are all such forms as

have the same cleyree in A^, A2 nml fx^ respectively. For, on

the one hand, every integral function of the y^,*^ certainly gives

an integral function of the same degree in the A^s and the fx*s,

and, on the other hand, every form of the A, fx^s which is of the

same degree in the A*s and fx'a can be written in the form of

an integral function of the terms A^^p Ag/^i, A^^g^

these terms are, disregarding numerical factors, equal to
2^i> p^y

Pv Pv integral functions of the yja,*

On the basis of this theorem, our method will now be to so

dispose a given rational invariant, which we are to represent as

a rational function of a, jS, y, p, by the application of appro-

priate factors in the numerator and denominator, that the

numerator and denominator, taken by themselves, are invariant

forms of the same degree in the A, /^'s, and then to compute

numerator and denominator individually as integral functions

of a, y, p.

Now, as regards the evaluation of such integral functions,

we remark that every invariant form of the same degree in A^, Ag

and /x^, P2
admits of hebug split, up into a complete and an alter-

nating invariant. In fact, let t\ be the proposed form, the

co-ordinated form which arises from it by interchange of

A and fx. Let us then simply put

:

(52) ?i±Ii+Ei:il222’
* Of, the analogous remark in the last paragraph of the preceding chapter.
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Here ^1 + ^2
2 *

as a complete invariant, is an integral function of

F — F
a, /8, y, alone, while —^ as an alternating invariant, breaks

up into the product of ^ and an integral function of a, jS, y.

The few rules thus established allow us to grapple with the

computation of the magnitudes by direct means.

§ 9. Fresh Calculation of the Magnitude

In our new notation

:

(53)
12/i

We will now first multiply numerator and denominator by such

an invariant form that there results on both sides the same

degree in the A, /z’s. It is evidently simplest (though by no

means necessary) to choose as such a factor. We thus write :

(54) m

In this formula the denominator is in itself a complete in-

variant
;
but we subject the denominator to the splitting-up

process just described. We thus obtain

:

/5RX ™ _W, + MJ,) + {MJ, - MJ,) .

(55) mi ,

the computation of is therefore redticed to replacing the two

complete invariants

:

il/i/g + ilfg/i and/i/a,

as well as the altermJLvng invariant

:

by appropriate integral functiom of a, /3, yand of a, /8, y, p
respectively.

We solve the problem which now lies before us by taking

into consideration, on the one hand, the degree of the forms in

the A, /i’s which have to be compared, and, on the other hand,

returning to the explicit values of our forms in the A, /i’s (as we
gave them in § 6). The invariants just mentioned + -Mg/i)*
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&c., are respectively of degree 13, 12, and 13 in the A, /^’s.

On the other hand, a, y, p exhibit, with respect to the

same variables, the degrees 3, 4, 5, 10. Hence we conclude, in

the first place, that (i/j/
2
+J[/

2./i)
be a linear combination

of the terms ay^, /?^y, and then, further, that /^/g is equal to

just such a combination of apy
;
finally, that - ^(

2̂/1 )

coincides with ap, save as to a numerical factor. In order to

compute the numerical coefficients still undetermined, it is

sufficient to pay regard to a few terms only in the explicit

values of the individual forms, say, then, to the leading terms

which present themselves when we arrange the forms according

to descending powers of and ascending powers of Ag. I

communicate here, for the sake of completeness, the leading

terms of the forms which w^e have to consider, each to the

extent to which we shall actually use it. We find by § 6

:

*= 1 1/^1V‘/ - /^iV2”) + (
“ 26/x/

+

/l/2='^l"^2 (/‘l'V2+ 11/^1V2®-/*W*)+ • • •>

likewise

:

= Aj^ViV/ + + 3^1Va®) + • •>

ay2 = (2/iiV2'’ +V1V2”) + '

V

2 (0) + • •>

I3^y
=

(/Xi*

V

2 + 2/^1V2“ + /*l‘V2”) + V^^2 (0) + • •.

-^i‘ViV2®+3^i"ViV2*+ • • •>

a^y= -\j1=*(/1iV2® + /X2V2®) + V’^W>2+10/XiV2*-Mi/^2“)+ • •>

oA= - V®Mi’'V2+ • • •

From these, values we now infer immedutteli/

:

= 1 1«®/8 + 2/8*7 - “7®.

(66)
] /i/2

= <‘"-^® + a/J7.

= -oy,

and therefore finally:

(67)
_(lla3/3 + 2^y-ay«)-av

^ 24(a«-/^ + a/8y)
’

which is exactly the value comm unicated in formula (38).

In the same manner we could now, of course, compute n^
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and also : the calculations in question would only be some-

what more elaborate, because in them we are concerned with

constructions of a higher degree in the A, /^’s. We shall be

able to decompose these calculations, as we always can in

similar cases, by proper principles of reduction into a greater

number of smaller steps (compare Gordan^s work). We do not

enter further on this, because we have already, in § 5, obtained

simple formulae for and and the principle of Gordan’s

method of computation will be sufficiently known by the

example of

§ 10. Geometrical Interpretation of Gordan’s
Theory.

In the preceding paragraphs Gordan*s theory has been ex-

pounded from a purely algebraical point of view : we shall bring

it closer to our other considerations if we reflect briefly on its

geometrical significance. Wo have here to interpret as co-ordi-

nates on the canonical surface the ratios Ag and r/Zg, as we
regarded them in the last paragraph of the preceding chapter.

An equation

:

then defines a curve lying on the canonical surface, whose inter-

sections with the generators of the first and second kinds are

determined as regards number by the degree of F in [jl and A

respectively. If F is an invariant, the curve in question is

transformed into itself for the sixty even collineations, and is

therefore half regular so far as it is irreducible. The curve

becomes regular, on the same condition, if the invariant F is

complete or alternating.

If we interpret in this sense the invariants occurring in the

preceding paragraphs, we are merely led to curves whose sig-

nificance is either immediately manifest or is a 2)riori known.

The curves a= 0, /S= 0, y= 0 have come before our notice

above as curves of intersection of the canonical surface with

the diagonal surface.*

Employing for a the representation given in (41), we can now easily

prove the assertion previously made, that the curve a=0, i.e., Bring’s curve,

possesses no true double points, is therefore irreducible, and belongs to the

deficiency 4.
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pr= 0 gives a curve which evidently splits up into ten plane

portions
; /i= 0, 11^ = 0, = 0 represent certain aggregates of

twelve, twenty, or thirty generators respectively of the first

kind. But what do = 0, iV^= ® denote ? It follows imme-
diately from the form of N^y that we have to do with curves

of thfe fourteenth and eighth order respectively, which cut* the

individual generators of the first kind only once. These are

the sawe curves v^hich we have he/ore rcjpresented hy formulae of

the following kind

:

(58) W.{X,y X,)

Ag).

In fact, we shall be led back to these formulae if we determine

from JUfj = -^1 = — as a rational function of y ,
and

insert the value found in the formulm (40)

:

In the same sense the equation :

(59) m . T{\y A
2)

. N^ + I2n ./^ (A^, A^)

.

represents the whole family of those curves of the 38th order

which we considered in § 4 of the present chapter (see formula

(27)).

We now turn in particular to the computation of m^ given

in the preceding paragraph. Originally we had by (53)

:

m .

1 127;’

is therefore a function on the canonical surface, which

vanishes along the curve of the 14th order, = 0, and becomes

infinite for the twelve generators of the first kind /i= 0.

Writing now, as was done in (54),

WJ2
we have evidently raised the two curves = 0, /^= 0, by addi-

tion of the curve/2
= 0

,
Le,, an aggregate of twelve generators

of the second kind, to the complete intersection of the canonical

surface with the accessory surface
;
the intersecting surfaces can
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S

then, in particular, bo so chosen that they themselves are trans-

formed into themselves for the GO even collineations, and are

therefore represented by equating to zero integral functions of

F* Hence the structure of formula (57), and also the

measure of its arbitrariness might be made manifest. I leave

it to the reader to interpret in a similar manner the significance

of formula) (36), (37), for and

§ 11. Algei’i^aigal Aspects (after Gordan).

We have so far expounded the Gordan theory a» it origin-

ated, viz., as a direct method for computing the magnitudes

occurring in the solution of the canonical equations of the fifth

degree. Herr Gordan has, however, in his exhaustive memoir

published in the 13th volume of the Annalen, chosen a much
higher standi^oint

;
ho has proposed to himself the problem : /o

construct the full system of invariavt forms F > Fv
ds many relations as ]}ossihle heiuren these forms. Ho thus finds

36 systems of forms, of which those which are different from

A y> V connected by permutation of X and /^. We
cannot go more fully into these results, but must consider the

method which Herr Gordan has employed for their deduction.

Let us recall how we previously deduced H{X^y X,^)^ T(X^y Ag)

from /(^i, Ag), by means of processes of differentiation apper-

taining to the invariant theory. In just the same way Herr

Gordan obtains his forms, putting at the head of them

:

a = - A-jViVo -

as a “ double-binary ground-form with two series of indepen-

dent variables.’'

Let us first explain, in resj)ect to this, how /(A^, X^) [the

ground-form of the icosahedron] is now to be defined. Con-

sider Aj, Ag as constant in a, i.e.y a as a binary form of the third

order of Then, I assert, / is the discriminant of

this fo'i'm of the third ordcr^ disregarding a numerical factor.

We confirm this by direct calculation. We first construct, in

accordance with the usual rules, the Hessian form of a, and

find, save as to a factor, the following invariant, quadratic in

the /i’s

;

P
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(60) T= - 3AiA/) + IO/.1/.2A1®A/ + “ K%
which we shall again use later on. We further compute the

determinant of r, and come back, in fact, disregarding a

numerical coefficient, to

:

/= A^ + llAj^A/ - A^A./i.

Let us further explain how Herr Gordan obtains the

formulm of inversion, which wo were able to establish in § 4 by

applying those data which we obtained above, I, 4, § 12 (some-

what incidentally), by the formation of the canonical rf^solvent

of the icosahedron equation. In Herr Gordan^s method those

invariants which are linear in /^2 form the starting-point.

He shows that four different invariants of this kind exist,

among which those two which are of lowest degree in the A’s

are exactly identical * with our My Now by formula (40)

the are themselves linear forms in [jiy
:

Hence we can write, from the outset

;

(61) = . M^ + Cy . Ny

where the coefficients (Cf Cy are to be taken from the identity

:

V-’ M,
Sy, aji/j aiv,

¥1 ¥1 Vi
ail/. aiVj

a/tj 'V2

Here a, as the functional determinant of and Ny is itself

an invariant; we have seen above that it is identical with

M(Ap Ag). On the other hand, are necessarily five-valued,

like the ?//s themselves. Computing them as functional deter-

minants of and Ny and respectively, we then get

the same magnitudes as we before denoted by IF^Aj, Ag) and

ty{}.y Ag) . W'y{Xy Ag). In fact, formula (61), written in our

earlier notation, must run as follows

:

One of these four invariants, if we multiply it by y/j, is contained in the

general form m , » Ni-\-\2n ,f-^ . My the vanishing of which represents

those curves of the 38th order which we have previously considered. Among
these curves, in addition to N^—O^ a third presents itself whose order

reduces to a lower number, viz., to 18,



THE FIFTH DEGREE t227

(62) \) . y, = WXK K) • +UK K) • ^^{K K • -^1

;

compare, say, formula (46) mpra. We can say that Gordan's

development of this formula, as we have explained it, is just

the reverse of ours. The further course of the calculation is

then the same in both. In order to express the y/s by means

of the A’s and the other given magnitudes, we introduce in (62),

instead of the expressions

:

Wi
N,.T,
144 .

i.e., quotients which are both of the first dimension in ^
and ^2 >

then compute these as rational functions of

a, (}, y, v> same way as was done in § 9 for in

particular.

Wo pause for another moment over Gordan^s derivation of

formula (62). We can evidently put it into words as follows.

Since the y/s are bilinear forms in Ag and their

determination requires (if we have assumed Ag arbitrarily—as

is allowed—and then found A^ : Ag from the corresponding

icosahedral equation) only the knowledge of in addition.

We now obtam these hy annexing the two invariants, linear in

compute them as rational functions of

A^, Ag, and of a, y, v« ^^ve thus two linear

equations for ^2 ;
if we solve these for //g, and insert the

values which arise in the formula for y„ we have the result

which wo sought, the same which is presented in an abbreviated

form by (62). Or we can also put it thus. If we put j)!fj = 0,

we determine in the binary manifoldness Pi - p^^ first element

contragredient to the elements A^ : Ag, or—to express it more

generally— a covariant element. We obtain a second element

of the same kind if we take iV^i= 0. Our problem is to find

that element in the manifoldness
: p^ which is represented

byy„ = 0. We solve this problem in (62) by constructing y„

with the two covariant elements and by the help of ap-

propriate coefficients, thus proceeding according to the same

fundamental theorems of the “ typical representation which

we employed above in describing the Tschirnhausian trans-

formation. The mode of conception thus denoted will often

come into play later on in a generalised form.
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§ 12. The Normal Equation of the r/s.

In our general survey of the different paths struck out for

solving the equation of the fifth degree, we have about (II, 1,

§ 1) separated the method of resolvent constrnction from that of

the Tschimlmnsian transformation, remarking, however, that we
can always replace the one method by the other. When we
solved the canonical equations of the fifth degree directly by the

help of the icosahedral equation, we followed the method of

resolvent construction. If we are to expound the method of

the Tschirnhaiisian transformation in place of it, we shall have

to start from one of the resolvents of the fifth degree, which we
have established in I, 4, for the icosahedral equation, as a

nm^mal equation,

.The resolvent of the r^^ which we constructed in § 9, loe,

cit,, and to which we then assigned the form

:

(63) : l = (r~3)»{r"-~llr + 64)

: r(r^ ~ I0r + 45)^

: -1728,

seems to be in this respect most adapted to our purpose. In

fact, we have already (suqrra, § 13, he. cit.) represented the u„,

v„, rationally in terms of r,

:

__ 12 _ 12

T0ir+T5’
" “

r, - 3
’

if we insert these formulae in our present one:

we obtain immediaidy orpresentation of by means of tlie

roots of the normal equation (63):

(64)
_ 1 2(r„ - 3)??i| + 144^1

^
“(n - 107, +45)'

The only further question that arises is how we ai’e to compute

j. _

as a rational function of the y,’s. We will here strike out a
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path similar to that just taken (§ 9) in the computation of

For brevity, let

:

then we write in turn

;

1 ‘A
7i.72

’

. \z/'2 2 *7l] + [^v“, 1 • /2 “ ^ ^ 2 * /l]

2/,./,

Here is, as we know, equal to (a^ — jS^+ajSy). We can

now compute, in a perfectly analogous manner, the two por-

tions of the numerator (by returning to the explicit values in

Ai, Ag and /ig). Let us for a moment suppose the to be

introduced in place of the A, /^’s, then these components are

such integral functions of the ijs as remain unaltered v^lmi

we permute those four y's, whieh are different from oiir fixed

in an arbitrary manner and in an even manner respectively.

Now the sums of the powers of these four y’s are integral

functions of y^, a, /?, y, but their difference-product is equal

to 5v : (2/i»^+ 2ay„+/S), where (y^+2ay+/3) denotes the differ-

ential coefficient of the left side of our principal equation

divided by 5, Hence \t^,
^ . f^+t^, 2 • /i] '^'^degral

fiinetion of y^, a, P, y, hut [t ^ ^ •/2— 2 •/2]
the product of such an integral function and the magnitude

A y - It is not necessary for me to go into the details
2/v^ + 2ay, + ^ ^

^ ^
^

of the calculation; I will therefore only communicate the result.*

We find :

(65) 2 (a^ - + aySy) r„

= [(ay + 2/?^) yf + (a3 - (ly) y? - Sa^/J . + (4a2y + 1 3a/?2)

+ (lla4 + 9«^y)]-[ + + _ j.

Summing up, we have the following result : We have in (65)

the Tsehirnhausixm transformation which transforms the given

canonical equation into the normal equedion (63) ; if we have then

determined the roots r^ of the latter, (64) gives 2cs the explicit

values of the yjs which we sought.

* See Math. Ann., t. xii, p. 55G.
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§ 13. Being’s Tbansfoemation.

I have communicated in detail the formulae of the preceding

paragraph the more willingly because from them, as I shall now
show, all formulae can be derived which are required in the

execution of the Bring transformation,'^ Let y^, y^

and y^, y^\ yf^ yf, yf be the co-ordinates of two points on the

canonical surface which belong to the same generator of the

first kind. Then we obtain for the corresponding canonical

equation’s the Z and r/s,t while we distinguish the other

magnitudes which present themselves therein for consideration

by addition of an accent, and will therefore put a', /8', y\ y',

in the second equation opposite a, /9, y,

first. I say now that a double application of the formulae (64),

(65) is sufficient in order to transform one of the canonical

equations into the other, and the roots of the one into those of

the second. We will, for brevity, denote by (64'), (65') the

equations (64), (65) when they are written with accentuated

letters. Then the whole process which is here necessary

evidently consists in expressing first, by means of (65) the r„’s

in terms of the t/^’s, and then, by means of (64'), the yf^ in

terms of the r„’s (which is the transformation we sought), and

then, conversely, computing by means of (65') the r„’s as func-

tions of the
2
/„’s, and so finding from them the yjs by means

of (64).

The Bring theory is furnished hy a siiecial case of the general

method thus given. The generator of the first kind, viz., which

carries the point y^ meets the curve a= 0 in three points : we
obtain the Bring transformation if we choose one of these

points as y\ This means, analytically, that we are so to deter-

mine Wj', n\ that, in the canonical equation for y', the term

involving y'^ disappears. A glance at the general canonical

resolvent (I, 4, § 12) gives us at once the cubic equations which

mf^ nf must satisfy in consequence; in other words, the

cubic auxiliary equation which the Bring theory required
;
it is

as follows

:

See the analogous formulse in Gordan*s paper in Bd. xiii of the Math.

Ann., p. 400, Ac.

t Or more correctly and rv, j's, as we might have written in the preced-

ing paragraph.
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(66) 8m3 + 12m*M + tr”*
= 0.

It depends, as is clear a priori, not on the individual point

y, but only on the generator of the first kind on which tliis

point is situated, and on the sixty generators which arise from

the one mentioned in virtue of the even collineations. We
have nothing further to add concerning the Bring theory

;
the

most wo can do is to call attention to the fact that (65') now
becomes very simple, inasmuch as a'=0.* It will also be

useful to give prominence to the fact that, in the trinomial

equation which we obtain by carrying out the Bring trans-

formation, we always know, a j^i'iori, the square root of the

discriiriinant.

§ 14. The Normal Equation of Hermite.

Now that wo have brought the Bring theory so simply into

connection with our developments, we will seek to do the same

with the normal form on which Hermite bases the solution by

elliptic functions. As we saw above (II, 1, § 4), this runs as

follows ;

(67 )
Y '^ - 2 ‘

. 5^ 74^ (1 - . F - 20 n/5^ (1 - (1 + = 0
,

where — We shall inquire if this equation is contained as

a special case in the general canonical resolvent of the icosa-

hedral equation, when we put Z, the right side of the icosahedral

equation, equal to

:

(68)
92 ^ 4 (1 -

A' ^ '

"^(i - K^y ’

as we did above (I, 5, § 7) in dealing with the solution of the

icosahedral equation by elliptic modular functions; we shall

inquire why Hermite in his investigations was led, at the

outset, to the Bring form, while every canonical equation of

* In a manner similar to that in which the Bring transformation is

effected by means of (66), the problem is solved by the help of an equation

of the fourth degree : from the given canonical equation to establish another

for which j8'=0. To the feasibility of this problem it seems that Jerrard

first called attention [Mathematical Researches, 1834],
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the fifth degree can be solved by the help of elliptic functions

(through the intervention of the icosahedral equation), and the

Bring form is by no means the simplest among the infinitely

many canonical equations with one parameter which present

themselves.

In order to answer these questions, let us insert for Z in

(66) the function of given in (68). The result is that the cubic

equation (66) hceomes reducible. In fact, it is satisfied, as we
can verify immediately, if we choose

:

m:^i = 3K2:2(2-5K:2 + 2K^).

I will accordingly put :

(69) m = 3K-(l + K^), n= 2 (1 + K“) (2 - +

2

k'*).

The coefficients of the canonical resolvent given in I, 4, § 12,

are then considerably condensed, so that we obtain the equa-

tion :

(70) / - 2* .
3^5

. 5 .
k’o (1 -

. y - 2® .
3’o

. (i ^ (i + k^) = 0.

Here we need only further substitute for y :

(71) y=-^S.r,
9k^

in order to find precisely the Hermite equation.

Our first questinn is therefore to he answered in the affirmative.

At the same time 'we discern the answer to the second question in

the circumstance that Hermite operated, not 'with the rational in-

variints g^, hut with throughout.

If we now compute for the Hermitian equation, or, what

comes to the same thing, for (70), the corresponding we
naturally come back, a proper choice of the sign of p being

made, to ^ . But a very simple value arises for Z^ also
; we

find, on reversing the sign of p in the expression for Z^

:

(72) ^ _(l + UK^ + K^f.
2 108k2(1-k‘^)4*'

* We have here to take (for (70))

:

.
3*° . K** (1 - K^)* (1 - 6k2 + k*).

t Cf. Oordan, loc, cit,, or my communication, already mentioned, in the

Rendiconti of the Istituto Lombardo of April 26, 1877.
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2%is, as is shown in the theory of dlijytie fund ions, is one of the

, , n ^

three rallies which arise from ^ hy a quadratic transformation

of the elliptic integral. We cannot, unfortunately, follow up

further in this place the interesting connection of the Bring

curve with the quadratic transformation of elliptic functions

which here presentsitself.* ***

Breaking off for the present these developments, we here

content ourselves with the fact that the Bring and Hermitian

formulae fit in with ours. In the fifth chapter we shall return

to our present results from a general point of view, and seek

to decide what theoretical value they possess.

* Gf. my memoir; ‘‘Ueher die Transformation der elliptischen Func-

tionen und die Aufldsung der Gleichungen fUnften Grades,” in Bd. xiv of

the Math. Annalen (1878), especially p. IGG, &c., of the same.
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CHAPTER IV

THE PROBLEM OF THE A’s AND THE JACOBIAN
EQUATIONS OF THE SIXTH DEGREE

§ 1. The Object of the Following Developments.

In the preceding chapter we iiave considered two series of

binary variables, and which were simultaneously

subjected to homogeneous icosahcdral substitutions, and besides

to a piCBess which wo called the interchange of A, We
have further had under investigation certain bilinear forms of

the A, which we called The undergo on their part,

for the transformations of the A, /^’s in question, linear substi-

tutions of the simplest possible kind, to wit, mere permutations,

and indeed permutations of the whole set
;

if we are uiureiore

to establish a corresponding form-jjrohlem of the yts, this finds

its complete expression in the equation of the fifth degree

which the y/s satisfy, in the canonical equation. We can

in this sense assert that we have been concerned in the pre-

ceding chapter with a form-problem which arises from the con-

sideration of the simultaneous substitutions of the A, /^^s.

Now in the following pages a statement of the question of

a quite similar kind (which moreover possesses essentially a

still more simple character) is to be dealt with. The simul-

taneous icosahedral substitutions of the A, jw’s were, as we
called it, contragredient

;
we will noxo take into consideration two

series of binary variables :

A,2
;
Aj

,
Xg

I

which are in each case simultaneously subjected to the same icosa-

hedral substitutions, and so can he described as cogredient. In the

case of these, again, we construct certain bilinear forms, viz.,

the symmetric functions

:
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(1) Ao=-1(A.,V + Vi'). a, = v/. a,= -aa',

i,e,, the coefficients of that quadratic form

:

(2)
- ^2^^

which arises on multiplying out the factors

:

AgS?! - AjZg, Ag Zi -

If we subject the A, A'^s to the 120 homogeneous icosahedral

substitutions, or interchange them with one another, these A’s

undergo on the whole sixty ternary linear substitutions, for the

individual A’s remain altogether unaltered, not only for the

interchange of the A, A'’s, but also when we simultaneously

reverse the signs of A^, A2 ,
A^', Ag'.* We shall deal vnih the

ternary form^-problevi which is involved in the consideration of the

snhstitutions thus defined.

We have already stated that this form-problem of the A’s is

essentially more simple than that of the t/’s. In fact, we shall

be able to direct our considerations and computations through-

out towards the ordinary icosahedral problem, from which the

results we seek then offer themselves in virtue of a definite

principle of transference well known in modern algebra, so that

indeed the accomplishment of our problem appears almost as

an exercise in the application of certain fundamental theorems

appertaining to the theory of invariants.f According to the

same scheme, we should also be able to deal with the case of

3, 4 . . . series of binary variables which are subjected to the

icosahedral substitutions or any other group of binary substitu-

tions in a cogredient manner. If among these infinitely many,

so to say, associated form-problems we select the one just

described, it is because we employ it in the further considera-

tion of equations of the fifth degree. We shall soon learn

that the general Jacobian equations of the sixth degreey by which

Kronecker's theory of equations of the fifth degree is supported, are

resolvents of our problem of the A’s. By substituting for it

* The substitutions of the A^s are hence simply isomorphic with the sixty

ordinary non-homogeneous icosahedral substitutions.

t The principle of transference in question is essentially the same as that

to which Hesse has devoted a memoir in JBd. Ixvi of Orelle’s Journal (1866).
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altoget.lier the problem of the A’s, wo shall succeed in the

simplest way in understanding from our standpoint the various

results which have been discovered in other quarters for the

Jacobian equations of the sixth degree, and thus in attaining

for the general treatment of equations of the fifth degree a

uniform basis, which is nothing else than a rational theory of

the icosahedron.*

The arrangement of the subject-matter for the following

developments is already given by what we have said. The first

thing is to establish the problem of the A’s in an explicit form,

where we shall again make free use of geometrical interpreta-

tion. On then studying the corresponding resolvents, we are

enabled to pass over to the Jacobian equations of the sixth

degree, and to the researches of JBrioschi and Kronecker relative

thereto. I finally apply myself to the solution of our problem,

and show that it can be accomplished with the help of an
icosahedral equation and an additional square root, in strict

analogy with the Gordan theory expounded in the preceding

chapter.f

§ 2. The Substitutions of the A’s—Invariant Forms.

In order now to determine explicitly the substitutions of our
A’s, let us recur to the generating icosahedral substitutions S,

T, and U respectively. We had for the Aj, :

'
^

I

Wr. A/= ±(e2_e3)\±{*

U : ^ Ag, Ag'= ± Aj.

Like the Jacobian equations of the sixth degree, the general equation*
of the degree which we described above (II, 1, § 13) can be replaced

by parallel form-problems which are related to variables Aq, Aj, . . .

An^ I have accomplished this for n=7 in Bd. xv of the Math. Ann. (1879)

;

see in particular pp. 268-275.

t The principal reflexions to be employed in the following expositions
were laid before the Krlanger Sociotat by me on November 18, 1876 [“Weitere
Untersuchungen iiber das Ikosader, I’*]; c/. further the second part of my
memoir, which appeared under the same title in Bd. xvii of the Annalen
(1877). The developments § 8-13 were then added for the first time.
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Writing down the same formnte for the we obtain

from ( 1 ) for onr A's the following substitutions

:

(4)

S: Ao' = Ao, A/=€4A, A/^eAg;

[ \/b • Aq' = A() -I- Aj + A.j,

T:\ n/5 . A/ = 2Ao + (c^ + 68)Ai + (€ + €4)A2,

x/5 . A,' = 2Ao + (€ + €4)Ai + (£2 + 63)A2 ;

[
^7: Ao'=-Ao, A/=-A„ A/= -A^,

which all, like (3), have the determinant-!- 1 . From them are

composed the 60 linear substitutions of the A*s which exist

according to the old scheme (I, 1
, § 12)

:

(5) S^U, S^TS^U (/x, v = 0, 1, 2, 3, 4).

Now, .as regards the invariant forms, i.e., those integral

homogeneous functions of the A’s which remain unaltered for

the substitutions (5), the determinant of {2):

(6) il-Ao^ + AjAg,

at all events, belongs to them. In fact, this becomes, on intro-

ducing the A, A'’s equal to (A^, - X^, A/)^, and therefore re-

mains altogether invariant if we subject the A, A^^s simultaneously

to any homogeneous substitutions of determinant 1 . Besides A,

the full system of the forms which we seek \oill only contain, as I
assert, three more forms, of the ^th, l^ih, and Ibth degrees respec-

tively. Namely, if ^=0, then Xf=^MX^, X^^MXsi, understand-

ing by M an arbitrary number
;
therefore by ( 1 )

:

(7) A,= ^il/V„ i
=

The required forms are accordingly transformed into multiples

of forms of A^, Ag, whose degree in the A's is double as great as

the original degree in the A’s, and which, moreover, have the

property of being transformed into themselves by the homo-
geneous icosahedral substitutions of A^, Ag. But now the system

of all icosahedral forms is composed of the form of the 12th

order /(A^, Ag), the form of the 20th' order H(X^ Ag), and the

form of the 30th ^(Ai, Ag). Hence follows our assertion by

* I hope no misunderstanding will arise from the fact that the letters

Xj', X2' just employed in formula (3) on the left-hand side have been used

before, of course with quite another meaning.
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reciprocation. We might even say that, corresponding to the

identity

:

(8) = 1728/5 -7/3,

a single identical relation will subsist between the new forms

which is transformed into (8) as soon as we put A=0.
I will denote the three required forms by B, (7, D, In prov-

ing their existence by reverting to the icosahedral forms /, JET,

T, we have already made use of the algebraical principle of

transference which we proposed above. This we shall do in a

higher measure by now actually establishing B, 67, D, if only in

a provisional form. Wo are here dealing with a process of

polarisatiim adapted to the purpose. If <j!)(Ap Ag) is any form

which remains unaltered for the homogeneous icosahedral sub-

stitutions of A
2 ,

and if Ag', are cogredient w^th A^, Ag,

then all the polars

:

•

•‘sx;
• ’

will be invariant for the simultaneous substitutions of the A, A'^s.

Lot us now construct in particular for /i(Ai, Ag), -66 (A^, Ag),

T(Ai, Ag), respectively the sidh, tenths and fifteenth polars. We
thus obtain invariant forms which are symmetrical in the A, A''s,

and therefore represent integral functions of Aq, Ag. On
writing them down as such, we have found the required forms

J?, 67, D. In fact, these forms are now necessarily invariant for

the substitutions (4) or (5) ;
they have, moreover, the degrees 6,

10, 15 in the A^s, and are transformed into multiples of /(A^, Ag),

Ag), r(Ai, Ag), when the formulae (7) are applied. I will

communicate here at once the result of the calculation. After

separating particular numerical factors, we find in the manner

explained

:

i?' = 16Ao^ - 1 SOAo^AiAg + + 21 Ao(Ai® + A./) - 5Ai8A2®

a = - 512Ao’® + 1 1520Ao»AiA2 ~ 40320Ao®A;''A2‘" + SSeOOAo^Ai^AgS

-6300Ao*“A/A./ - 187(Ai'« + + 126Ai5A2»

+ Ao(Ai5 + - 18480Ao‘^AiA2 + IQSOAi^Ag^),

2)=:[Ai5 - A./]
{
- 1024Ao'« + 3840Ao8AiA2 - 3840Ao«Ai2A22

+ 1200Ao^A^3A.3 - lOOAo'A/Ag^ + + A./<> + 2Ai5A2«

+ Ao(Ai^ + A2^)“ (352Ao^ - 160Ao‘^AiA2 + lOA/Ag^)}.
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I have here denoted the two first forms no longer by B and

C, but by B' and Q\ because I will hereafter modify these

further by addition of factors which contain A as factor.

Only when this is done shall I establish the relation which

makes equal to an integral function of A, B, C, If we
apply the substitution (7) to the preceding forms, which for

simplicity we will put M= 1, we have, in agreement with what

was said before

:

r 21 . /(\, A^),

(10) \
G'= IS7 . //(Ai, A,),

I D = .

§ 3. Geometrical Interpretation—Regulation of the
Invariant Expressions.

In order to facilitate our mode of expression and the

growth of our ideas in the domain of the function-theory, let

us now introduce our geometrical interpretation. Retaining

throughout the analogy with the developments of the preceding

chapter, let us regard Ao : : Ag as the projective co-ordinates

of a point in the plane, the substitutions of the A’s as so many
plane collineations.f The individual invariant form of the A*s

* The method of calculation contained in the text is described in the

text-books on the theory of invariants, at the suggestion of Gordan^ as trans-

vection of the quadratic forms (2), and indeed (disregarding numerical factors)

B' is the 6th, C the lOlh,U the 15th, transvectant of the corresponding power

of (2) over/, II, and 2' respectively. I have not applied this mode of expres-

sion and the corresponding symbolical relation in the text, because I wished

not to presuppose in this respect any specific preliminary knowledge on the

part of the reader.

t We can of course regard every form-problem in a corresponding manner.

If we proceeded differently in the foregoing part, and interpreted the binary

form-problem by means of points of the (-c+iy) sphere, it was because we
wished to have intuitively before our eyes not only the real, but also the com-

plex values of the variables in the elementary sense.

I annex hereto a somewhat different interpretation of the problem of the

A’s. Put Ao= 2, Ai=u;+iy, and regard x, y, z as the rectangular

co-ordinates of a point in space. Observing that the sixty substitutions of

the A’s have the determinant unity, and A is now we recognise

that the said substitutions now correspond to rotations round ike origin of

co-ordinates. These are the rotations for which a determinate icosahedron is

brought into coincidence with itself. The six fundamental points to be

immediately introduced in the text give on this interpretation those six

diameters which connect two opposite summits of the icosahedron. On the
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then represents, when equated to zero, a plane curve which is

transformed into itself for the said collineations. In this

respect we have first the conic A=0, which we will call the

fuTidamental conic. If we write in accordance with formulae

(7) (again taking M=V):

Aq = — A^Ag, = Ag^, Ag = - Aj2,

we have expressed the variable point of this conic by means

of a parameter Hence we shall be able to denote the two
Ag

A X'
parameters which appear in formula) (1) by means of

two points of the fundamental conic. These are the two points

in which the two tangents from the pioint A to the fundamental

conic touch the latter. In fact, the polar of the point A with

respect to -4 = 0 has the equation

:

2AoAo' + A2A/ + AiA2' = 0,

and this equation is satisfied if we substitute for the A*s the

expressions (1), and for the A''s the expressions (7) or the

corresponding ones in which A' is written instead of A.

The points of the fundamental conic are naturally so

grouped that aggregates of twelve, twenty, thirty of them are

self-conjugate, represented respectively by

:

/(Ai,A2) = 0, H(A„A2) = 0, T(Ai,A2) = 0;

these are at the same time the points of intersection of ^ = 0

with the curves i?=0, (7=0, i?=0. We will now connect by

a straight line those pairs amongst these points which remain

fixed for the same collineations. Then we obtain, correspond-

ing to the forms f H, T, six, ten, and fifteen straight lines

respectively. Constructing, then, for each of these lines, its

pole with respect to the fundamental conic, we obtain self-

conjugate groups of six, ten, and fifteen points in the plane.

Let us now consider the form of the equation

:

^ = Ao2 + AiA2=-0.

other hand, the equation D—O (of which we shall presently show that it

splits up into fifteen linear factors) gives the fifteen planes of symmetry of

the configuration.

We can combine this new interpretation with that of the X, V*s or a
sphere, but 1 do not enter upon this, since it would lead us too far.
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Clearly, the two angles of the system of co-ordinates :

Aq = 0, Aj = 0, and Aq = 0, A., ~ 0,

which appertain to = 0, are corresponding vanishing-points

for /, for both remain unaltered for the collineation S [see

mpra, formula (41)]. Therefore Ao=0 is one of the six

straight lines which belong to /; Ai = 0, A2
= 0 ,

the corre-

sponding pole. In agreement herewith Aq assumes, for our

sixty substitutions, only the following twelve values, corre-

sponding in pairs except as regards sign

:

(11) ±Ao, ± (Ao + c^Aj 4-

;

and in accordance with the same formula only the following

five points are grouped with the point Ai=0, A2= 0 :

(12) Ao : Ai : A2=l :
264- . 2^-.

I will describe the six points thus distinguished ^^fundamental

points of the plane. If we connect a first fundamental point

with the five others, we obtain the five straight lines

:

€»'Aj, - c^-Ag = 0.

Evidently the left sides of this equation are all contained as

factors in the value of D just communicated. The curve = 0

must, however, be uniformly related to all the fundamental

points. Hence tlie curve D=0 splits up into the fifteen connecting

Ihies of the sic fundamental points. The following algebraical

decomposition corresponds to it

;

(13) D=JJ . JJ ((1 + n/ 5^) A,+ *'Aj + e^'A,)

F ¥

- n/6) Ao + e^'Ai + e'Aa)!

(v=0, 1,2,3, 4),

as we easily verify. We could establish a number of interest-

ing theorems about the fifteen straight lines hero presenting

themselves
;
they are the fifteen lines which belong to the

point-pairs of 2'

;

they pass in threes through the ten points

which we co-ordinated * to the point-pairs of H, &c. I do not

* Clebsch has incidentally dealt with the figure described in the text in

the course of considerations allied, though again formulated quite differently,

and has thus announced the last-mentioned property : the six fundamental

Q
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enter further here on these theorems, because we do not make
further use of them

;
moreover, they are easily recognised as

transferences of projierties of the grouping of points which

occur in connection with the icosahedron.

As regards the curves C'= 0, these have no special

relation to our six fundamental points. Jt is this circumstance

which we vull ncnv make use of in order to reidace 7/ and C' by

two other ejjjressions. We shall introduce instead of B' a linear

combination B of B* and in such wise that the curve B=0
contains the fundamental point Ai= 0, A2= 0, and therefore (as

an invariant curve) all the fundamental points. In the same

way we shall replace G' by a linear combination C of G\ A^B,

and A^, which, equated to zero, represents a curve which has

at Ai=0, A2= 0, and therefore at all the fundamental points a

singular point of the highest possible kind. In this manner we
find (after casting out particular numerical factors)

:

u = = 8Ao'‘AjA,- 2A„^Af + A,''A/ -A„(A/ + A/),

187
"

= 320Ao^Ai2Ao2 - 1GOAo^Ai'‘'A2^ + 20Ao^A,^A,^ + ^A,^Af
- 4Ao {A,^ 4- aV) (32A,^ - 20Ao2AiA2 + SA^^A./) + A,^o + A.^o.

Evidently i?=0 has at Ai==0, A2=0, and thus at all the funda-

mental points not a merely ordinary point, but a double point,

and is therefore (since we can show that it can possess no

further double point) of deficiency 4. Similarly G= 0 has at

each of the fundamental points two cusps, ix.y a 4-tuple point,

and is therefore of deficiency ^ 0,

If we substitute in our new B, C, in accordance with for-

mula (7)

:

Aq = “ Aj = A2 = -

we have

:

(15) B^ -/(Ai, A
2),

0= A.,),

which we may compare with (10). The relation which expresses

points form a tenfold Brianchon hexagon (Math. Ann., Bd. ir ;
“ Ueber die

Anwendung der qiiadratisclien Substitution auf die Gleichungen 5. Grades

und die geomotrische Tbeorie des ebenen Funfseits,” 1871).
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as an integral function of A, C, will therefore have the

following terms not involving A :

Eeturning to the explicit values (9), (14), and taking account

of a sufficient number of terms, we find the complete formula :
*

(16) -1728i5S + 03 + 720.iai?3~8042a22? + 64^3(5^2

§ 4. The Problem of the A’s and its Reduction.

The Problem of the A’s, as we proposed it, is fully deter-

mined by the explicit formulm (6), (9), (14), now obtained for

Ay By Cy Dy Rud tho rolatioii (16). We suppose the numerical

values oi Ay By Gy D given in some manner in agreement with

(16) ;
OUT proUem reqiiircs us to determine the corresponding

systems of values of Aq, Aj, A2 « Since Ay By Cy D form the

full system of the invariant forms, our problem can only

possess such solutions as proceed from some one thereof by the

sixty substitutions (5). In fact, if we determine the number of

solutions by Bezout’s theorem, we shall be led to the number

60. Namely, from the values of A, By G arise at the outset

2 • 6 • 10 = 120 systems of values of the A*s, of which, how-

ever, since Ay By G are all even functions of tho A's, certain

pairs can only differ by a simultaneous change of sign of the

A*s. Of these 120 systems of values, only half can therefore

satisfy the given value of Dy since D is of uneven order. All

sixty systems of solution, as has already been said, proceed from

some one thereof by the substitutions (5). We can therefore

saijy in the sense explained previously (I, 4), that our problem is

its oum Galois resolvent after the adjunction of e, and therefore

possesses a group which is simply isomorphic with the group of

the sixty icosahedral rotations.

We consider now, in reliance on I, 5, § 4, the parallel system

of equations. The ratios of Aq : A^ : Ag are evidently determined

in sixty ways if in the equations

:

(17)

cy. Brioschi, in tom. i of the Anuali di Matcmatica (ser. 2, 1867), p. 228*
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we can regard the values of Y and Z as known
;
* the required

points A are the complete intersection of the curves of the

sixth and tenth orders respectively

:

From the sixty solutions of the equation system we now com-

mute those of the corrcsqwruling form-problem ratio'nally. Put,

namely

:

(18) =X

Then if Aq : A^ : : Og is one of the systems of solution

of the equation problem, wo have evidently

:

(19) AQ = /3aQ, = A2 = P«2>

understanding by p the following expression

:

^
2)

. XyD (ttQ, ttp ttg)

whereupon the statement is proved.

In this respect an essential difference exists between the

binary form-problems previously studied and the present ternary

ones
;
for then we required, as we showed in I, 3, § 2, one addi-

tional square root in the supplementary solution of the form-

problem. This, of course, corresponds to the circumstance that

the group of the homogeneous binary substitutions was only

hemihedrically isomorphic with the non-homogoneous ones,

while now simple isomorphism occurs. On the other hand,

the two agree in another point. We could in the former case

reduce the form-problem, as we called it, i.e., replace the three

magnitudes F^y F^ (connected by an equation of condition)

on which the form-problem depended, by two independent

variables, X and y, which were themselves rational functions

of F^y F^y F^\ whilst conversely the latter again depended

rationally on them. We obtain just the same result in the

problem of the A's if wo take into consideration the quotients

Xy Yy Zy wWoh WO just introduced in (17), (18). These magni-

tudes Xy Yy Zy urs lu thcmselvcs defined as rational functions

These magnitudes, Yy Zy are the same that we have denoted by a, 6, in

II, 1, § 7 [formula (36)].
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of A, B, G, D, but we can conversely also express A, B, 0,’D

rationally by means of JT, Y, Z. In fact, if we divide in (16)

both terms by A^*, we have, after an easy rearrangement, in

virtue of (17), (18):

(20) ^ _ 1728^5 + 720r»Z- 80rZ2 + 64 {hV^ -Zf
while

(21) C^Z.A^, D^X.A\

which are the desired formulae.

It is instructive to bring forward also for comparison here

the problem of the which we studied in the preceding

chapter as the canonical equation of the fifth degree. We then

supposed that, in addition to the coefficients a, y, of the equa-

tion, the square root V of the discriminant was given, the

square of which is an integral function of a, jS, y. We then

obtained sixty systems of solution y.^, which were

again fully determined (rationally) in terms of the correspond-

ing values of the ratios
• 2^1 • 2^2 * ^3 * depends on the

fact that we can construct as before from the given magnitudes

quotients ^ or ^ which are of the first dimension in the

y’s. We can also reduce the form-problem of the.y’s, only this

is not so simply attained as in the other cases. The reduction

is actually given by the n, Z, of the canonical resolvent of the

icosahedron. We have represented, viz., in I, 4, § 12, § 14,

a, )3, y, V, rationally in terms of 7?i, n, Z, while conversely we
have just now (in II, 3) given exhaustive methods in virtue of

which m, n, Z appear as rational functions of a, /S, y, y-

If -4 = 0 for the form-problem of A^s, we can solve it directly

by means of the icosahedral equation

:

1728/° (Aj, Ag) 1728i?®’

namely, if we have determined : Ag from it, we find by

formula (7)

:

Aq : Aj : A2 = — AjAg : : — A^^,

and hence, as we saw above [formula (19)], the values of

Ao, A^, Aa themselves.
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§ 5. On the Simplest Resolvents of the Problem

OF the A’s.

We will now consider the sinqdest resolvents of the problem

of the A^s. It is evident, from what we know of the group of

the problem, that we shall have to deal here with resolvents of

the fifth and sixth degree. Our problem will be merely to

establish the simplest rational and integral functions respec-

tively of tlie A*s, which assume, for the substitutions known to

us, five and six values respectively. The 'principle of transfer-

cnce developed in § 2 here again serves our ; 'ire take the

shnjjlest integral functions of A2 ,
which asswnie for the homo-

geneous icosahedral suhstitutions five or six values, pola'rise these

with respect to A2^ kill a function arises 'whieh is symmetrical

in the A, X'\s, ami finally substitute the A’s in place of the syni’-

metrical combinations of the A, A'\s’.

As regards the five-valued functions of the A^, Ag’s, the

simplest were

:

K) =
(22) - - 2€^»'A,A/ +

W.{X,, A,) = - c^^A^s + ^ 7€2^Ai6A,2 - 7£''A,‘'’>A.
3

+ 7e4»'Ai3A/ - 7€3''Ai2A/ - €2-AiA/ - €-Xf ;

to them are added, further, and t„ Wy, Now, polarising fy

thrice, W, four times, and introducing the A^s, we obtain

accordingly as the simplest five-valued function of the A^s:

+

€

2
. ( - 2A0A22 4. Ai^)

V ^ \ 4,,3.(2AoAi2-A./) +c4»'(~4Ao2Ai + A,2A2),

r5/ = €"
(
-

-I- BAoAjA. 2 - Ai^)

+ ( - 6Ao^Ag^ + AA" + AiA^^)

+ c3^(-6AoA" + AoA2^ + A,3A2)

+ €4^
(
- 4AoA + 3AoAiA - A2")

;

if we want more five-valued functions, we shall take in addition

and tyhf corresponding to t^ and tyWy, The resolvent of

the h ’s we shall presently discuss more in detail.

Of the resolvents of the sixth degree of the icosahedral equa-

tion, we have previously (I, 5, § 15) only considered the one

whose roots 0 are given by the formulse

;
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We obtain from this by our principle of transference', the follow-

ing roots of a resolvent of the sixth degree of the A’s

:

r r^.. = r)Ao2,

U. + ,)2.

Here, however, we have emethj the equations of definition oj

the Jacobian equations of the sh:th degree given in II, 1, § 3 ;
at

most we should have to mark tlio distinction that here e' stands

where e*’" stood before and conversely. But this is merely a

difference in the denomination of the roots If we recur t o

the formula) which we also communicated, loc. eit., § 5, in

describing the Jacobian equations, we learn first that our

present magnitudes A, B, C are exactly identical with those

similarly denoted there. We can therefore, without more ado,

carry over the form of the Jacobian equation previously com-

municated :

(26) {z - Af - 4:A{z - Ay + 10B{z - Af - C{z - yl) + {6B^ -^AC) = 0;

the only question is on what basis we shall place it from our

present standpoint. The further question arises how far we
can replace the problem of the A's by the equation (26), and,

in particular, what significance is then to be attributed to our

form D.

§ 6. The General Jacobian Equation of the Sixth

Deuree.

We have already in formula (11) come across the linear

functions of the A’s whose squares represent the roots z (25) of

the Jacobian equation of the sixth degree
;
we there saw that

these, when equated to zero, represent the polars of the six

fundamental 'points 'with respect to the conic A= 0, and therefore

certain straight lines which do not themselves perhaps pass

through the fundamental points. We can, however, introduce

in their place curves which do so; namely, we recognise at

once that the conics

:

z,-A==0{v^0, 1, 2, 3, 4)

all pass through Ai = 0, A2
== 0 , and that therefore of the conics:
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A = A = 0,

each contains those five fundamental poMs whose indices are

dijferent from its own. We will now consider the (z—Afa as

the actual unknowns. Then the theorem just given permits

us to write down at once (paying regard to the definition

of By C contained in § 3) the coefficients of the corresponding

equation, so far as their form is concerned. Let us consider,

for example, the sum

:

2
(
2,-^) (zu-A) (zi-A)

(where the summation extends over all the values of i, /c, I

which differ from one another), which will give the third co-

efficient of that equation : it must be equal to an invariant form

of the A's of the sixth degree which vanishes twice for all the

fundamental points, and can there only differ from B hy a

numerical factor. In this way we obtain directly

:

{Z’-AY + JfA{z-^AY + lB(z -Ay + inC{z - A) + {nB^ +pAC)== 0,

where k, /, m, n, p are numerical coefficients which are as yet

unknown, but which we determine readily hereafter by return-

ing to the explicit values of the expressions in the A^s which

present themselves. The coincidence with formula (26) is

obvious. Let us further remark that (26) is in fact trans-

formed into the resolvent of the sixth degree (which we
previously established) of the icosahedral equation, if we put

in agreement with (24) and (15)

:

As regards the groiip of the equation (26) [in the Galois

sense], this is determined already by our earlier elucidation of

the case -4=0, to which we here refer (I, 4, § 15). It is a

group of sixty permutations which is simply isomorphic with the

group of substitutions of the A’s. It must therefore be possible

to express the A’s rationally by means of our We effect

this most simply if we first compute from the equations (25) the

squares of the A^s and the products in twos, and hence derive

the quotients Aq : Aj : Ag, and then proceed exactly as in § 4.

Here we must manifestly make use of the D in addition to

Ay By Gy which alone appear in the coefficients of (26). We
can therefore say

:
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The Jacobian equation (26) is an equivaleM of the problem of
the A 5, if vje suppose that, besides its coefficients, D is also given,

i.e. {by (16)) : the square-root of a definite integral function of
A, B, G,

We now ask how D* may be expressed as a rational function

of the roots z. To this end we form from (25) the difference of

any two z'^ as a function of the A’s, and find that this, being a

difference of two squares, can, after separation of a constant

factor, be also split up into linear factors, such as, by formula

(13), also appear in D. We get, for exauiple

:

= (C" ~ (€*'Ai - A^) ((1 ± V5) Ao + €«'Ai + €4''Ag)

for i;=l, 2, 3, 4, where + Jb is to be taken for i/=2, 3;

for i/= l, 4. If we now multiply all these differences together

(each taken once), we obtain on tlie left-hand side the square

root of the discriminant of (26), which we have already (II, 1,

§ 5) denoted by IT. On the right hand, however, the constant

factors give ± the rest just B^, so that therefore

:

m
Here I) appears, as we see, in the form of an accessory irra-

tionality, i.e., as an irrational function of the z’b. This will not

be the case if, with Herr Kronecker, we regard not the 2's,

but the >fz*s as the unknowns of (26) ;
for we can immediately

express Aq, A^, Ag linearly in terms of the Jz'&. But even

then the statement of the problem is not fixed by (26) alone,

but the value of D must be given expressly besides. I believe,

therefore, that it is not to the purpose to make the Jacobian

equations of the sixth degree the keystone of the theory, but

that it is better to begin, as we have done, with the problem of

the A^s as such.

§ 7. Brioschi’s Resolvent.

We follow yet further the connection of our considerations

with the developments of Brioschi and Kronecker by now

studying, first of all, that simplest resolvent of the fifth degree

whose roots are the expressions B, (23). This must give exactly
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Brioschi*s resolvent
y of whuh -we gave an aecumit in II, 1, § 5.

For the S/s are completely identical, as an actual comparison

teaches us, with what was then denoted [formula (22)] by x„.

In order to compute our equation of the fifth degree, we first

seek, as before, the geometrical significance of the S/s. We
remark at the outset that all the S/s vanish for Ai = 0, A2= 0.

They therefore represent, when equated to zero, curves of the

third order which pass through all the fundamental points.

But more than this : the product of the S„’s must be, as an

invariant form of the fifteenth degree in the A^s, identical

with D save as to a factor, while D= 0 represents, as we know,

the fifteen connecting lines of the six fundamental points.

Hence each of the S/s, irhrn equated to zero, re/presents three

straight lines, which taken together contain the whole set of fan-

dameidal q^oints. We verify accordingly the following decom-

position :

(28) 5. = (€ - eA,^
. ((1 + jTy)A^ + ^^^A, + eA.^

. ((1- ^/5)Ao + €‘i‘'Ai + e>'A2).

We conclude therefrom that the product actually

identical with D (not merely to a factor As regards the

other symmetric functions of the S^s, we have in any case

:

for there are no invariant forms of the third or ninth degree.

We further conclude from the relation of 8 to the fundamental

points that

:

understanding by k, I, m, appropriate numerical factors. On
determining the latter we have finally

:

(29) 85 4. . 83 + 5(9i?2 _ AC)S -D^O,

agreeing with Brioschi,* and agreeing further with the special

formula which we derived in I, 4, § 11, on the supposition that

u4 = 0. The discriminant of (29) is of course a complete square.

* In Brioschi’s memoir somewhat different numerical coefficients wore

originally given, but these were afterwards rectified by Herr Joubert :
“ Sur

Tequation du sixi^jme degrd,” Comptes Rendus, t. 64 (1867, 1) ;
see in particu-

lar pp. 1237-1240.
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There is no difficulty in computing the productu {S^— Sy) as

an integral function of A, B, C. For A= 0 it will become

-25 V5.6^^byI, 4, §14.

The equation (29) is necessarily the more interesting,

because it represents, in the sense of our previous terminology,

the general diagonal egiiation of the fifth degree. To exjoress it

geometrically, we can say that the formula3 (23) for inas-

much as they satisfy identically tlio relation X8--0, SS^—0,
give a single^valued rej^resentaiion of the diagonal surface on the

‘plane A. Tliis representation is a special case of that well-

known one which was given * by Clehseh and Cremona for

general surfaces of the tliird order, and which Clehseh has

studied for the diagonal surface just in the form here in

question.f For to tlie plane sections of the diagonal surface

correspond in general, in virtue of (23), such curves of the

third order as intersect one another in the six fundamental

points of the plane which now heeome the fundamental points of

the representation. Here the intersection of tlie diagonal surface

with the canonical surface is represented by 7^=0 (as follows

from (29)), while the curves ^==0, 6^=0, taken together, repre-

sent those two twisted curves of the sixth order on the diagonal

surface wliich are the geometrical locus of points with the

pentahedral co-ordinates ty (II, 3, § 4). This is in accordance

with the fact that we have, in § 3 of the present chapter,

found the deficiency^ of the curves 5=0, A^O, C—0, equal

to 4, 0, 0.

§ 8. Preliminary Remarks on the Rational Trans-

formation OF OUR Problem.

Of the researches mentioned above relating to Jacobian

equations of the sixth degree, those still remain which relate to

the problem : from a first Jacobian equation of the sixth degree

to establish a second by a transformation rational in the

* Of. Salmon-Fiedler, ** Analytische Gcometrie des Raumes,” 3d edition,

1879-80.

t Viz., in the memoir just cited ;
“ Ueber die Anwendung der quadratis-

chen Substitution auf die Gleichungen 5. Grades,’’ Math. Annalen, £d. iv

(1871).
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and as general as possible. I will expound these researches

from our own standpoint, without entering further into the

historical relations thereof. Our object is to determine three

magnitudes, Bq, Bj, B2 J
ois general a manner as possible, as

rational homogencmts functions of the Aq, Aj, Ag, in such wise

that they themselves undergo the linear substituiiom of ^ 2 when

we subject Aq, A^, Agj to the same,*

Our requirement, be it understood, by no means demands

that the individual substitution of the B^s should be identical

with that of the A’s
;

it is only necessary that the totality of

the substitution should be mutually coincident. We know, so

far, two possibilities of attaining such coincidence : first, by

making the substitutions of the B’s actually identical with

those of the A’s
;
secondly, by allowing them to proceed from

the substitutions of the A’s on writing e in 2)lace of e through-

out
;
in the first case we speak of cogredient, in the second

case of contragredient variables. In the next paragraph but

one I shall show how we can thus arrive at a separation of

the two cases a priori, and that, besides them, no others

possessing individual importance can exist. Meanwhile let us

take our cases as given empirically, and ask how they are sub-

stantiated by definite formulae.

It will be to the purpose to first deal with the correspond-

ing statement of the problem in the domain of binary variables,

where we came repeatedly into contact with them in our earlier

chapters. Let be homogeneous rational, not necessarily

integral, functions of :

(
30)

Kj = (Aj, Ag)? ^2 ~ ^2 (^i> ^2)^

we require so to determine ^2 either cogredi-

ently or contragrediently transformed when X^ are subjected

to the homogeneous icosahedral substitutions. To this end we
construct the form, binary in two sets of variables:

(31 )
F (Aj, Ag

;
/Ag)

• ^2 (^i> ^2) ” f^2 • (^i> ^2)*

This evidently remains invariant if we subject X^, Ag to the ori-

ginal icosahedral substitutions, ja^, to the co-ordinated ones

* Our demand for entirely homogeneous functions is, one may say, an un-

necessary restriction, and one which we can afterwards remove, but which
we will retain in our exposition In order to be able to employ our geometrical

phraseology. See the analogous remark in II, 2, f 7.
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(cogredient or contragredient)
;
for it is equal to

and ^2 ^2 iindergo in each case identical substitu-

tions of determinant unity. Conversely, if vre have a form in

the A, invariant in this sense, and which is linear in the /jib

and homogeneous in Ag, then :

(32)
¥2 ¥i

will bo a solution of the problem proposed. It simply comes to

this, therefore : to estaUish all invariant forms F.

Now let us observe the following facts. If we have found

two systems of solution of (30) k^,
; Kf, Kf, the determinant

/Cj/rg'—zcg/Cj' remains invariant for all the icosahedral substitu-

tions. But this is equal to the functional determinant of the

corresponding forms F, F' :

8^
¥i ¥2
F' SF'

'

¥i ¥2

and this, therefore, as a rational function of Ag, must be a

rational function of the icosahedral forms/ (A^, Ag), H (A^, A^),

T (A^, Ag). I will now assume that we know some two of the

required forms F^, F^, with a non-evanescent functional deter-

minant. Then, if we apply the identity

:

F ^’2

SF 8F\ SF,

¥1 ¥1
SF SF^ SF,

¥2 ¥2 ¥2

it follows, from the theorem just established, that each of the

forms we seek is compounded of ^2. in the following form

:

(33) F=Ri . 2^1 + /?2 • F2,

where Jt^ are rational functions of / (A^, Ag), (A^ Ag),

T (Ai, Ag)* But, conversely, if we assume B^ to be rational

functions of this kind, and then only take account of the rule

that F is to be homogeneous in A^, Ag, F will be a form of the

kind required. Hence (33) contains in general the solution of

mr problem, provided only we regard two of our forms F^, F^ as
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hwwn. But this supposition is, in fact, admissible both in the

contragredient and the cogredient case. Indeed, we know in

both cases the lowest forms ix.y those whose degree in

Ai, Ag is as low as possible. In the contragredient case these

are the two forms which we always employed in the

preceding chapter

:

= = + X/) + /xg
(
- A/ + 7 A,2 Ag-^‘),

(.34)
]
F

, =M,
= /X, _ 39X^8X.^5 _ 26 A,3;Vgio)

I + /.g (26
A,ioAg3 - 39A/^Ag8 - A.;3)^

while in the cogredient case we have the two following

:

(35)

= - Aj/xg,

= u +
8A;*^^^SAg

•/^2*

Thus the question we raised is completely solved, so far as the

domain of binary forms is concerned.*

§ 9. Accomplishment of the Rational Transformation.

Returning now to the A^s, we can begin in their case with a

step which is analogous to the transition from (30) to (31) ;
in

other words, instead of seeking elements Bq, Bj, Bg, which are

covariant to Aq, A^, Ag, in the one sense or the other, we seek

an invariant which contains simultaneously both sets of vari-

ables. The feasibility of this is, geometrically speaking, founded

on the fact that an invariable conic

:

^0^+ ^182 = 0

lies in the plane B, and that, in respect to this conic, to every

point Bq, Bp B2 ,
there is co-ordinated as a covariant a certain

straight line, to wit, the corresponding polar

:

2Bo.Ao'+Bg.A/+Bi.A2' = 0.t

If, therefore, the folloimuj formulae

:

(36) Bq = </>Q (Ap Ag, A3), Bj = (Aq, A^, Ag), Bg = <^2 (Aq, Aj, Ag)

* As regards the contragredient case, we have alrecady become acquainted,

in formula (25) of II, 3, § 4, with a particular case which is included in this

solution.

t Here Aq', Ag' denote the current point co-ordinates.
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co-(yrdinate the B’s to the A’s either as coyredients or as cumra-

gredwivts, the form denved from, them

:

(37) F{\, A„ ; Ao', A/, A/) = Ho K + <t>2 A/ + <^1 • A/,

will he invariant, provided v^e effect the same suhditutions on the

A' as 071 the B'^*. Co 7iverseljj, piwidcd F is an invaria7it in the

sense explained

:

(38)
D _ 1 D _ ^F p _

are foroiiulm of the nature which we are seeking.

We now remark that every F admits of being composed

with three such i'^^s, which are linearly independent, in the

form

:

(39) R^F^ + R.^F, +

where B^^ B^ are rational functions of the invariant forms,

which depend only on Aq, A^, A2 ,
i-c,y rational functions of Ay By

Gy D, Conversely, if wo take B^y B^y B.^ as rational functions

of this kind, we shall always obtain from (39) a form F of the

nature we desire, where we have it in our power, if we attach

importance thereto, to make F a homogeneous function of Aq,

Ax, Ag* Everything is therefore reduced to flndingy in two easeSy

three forms y
F^y F^y F^y of as low degree in the A’s as possible.

In the case of cogredients we solve this problem directly by

the construction of polars, a process to which we subject the

lowest invariant forms, which only contain A’s, i,e,y Ay By C,

We shall puty namely

:

[F^ = 2Ao . A/ + A2 . Aj' + Ax . A/,

(40)
A ' + A ' + A '

8Ax

8Q 8G W

In the case of contragredionts, on the other hand, we again

recur to the principle of transference of § 2. We shall first

obtain three forms

:

I2(Ai, Ag

;

invariant for contragredient icosahedral substitutions, which are

of even degree .27^, of the second degree in the ffs, and of the
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lowest possible degree in the A’s. Then we shall polarise these

n s n-times with respect to A, introducing A' hy the operation, and
once with respect to p, introducing p, and shall finally replace the

syrmnetric functions of the A, }f's by the As, those of the [i, //*$ by

the A'^s, writing therefore

:

(41)
J

Aq — - *” ^2/^1 )> ^2

The forms II which are here most suited to our purpose we
can borrow from the data of Herr Gordan previously cited. As
the /2i,

we choose the form r, wliich we have communicated in

§ 11 of the preceding chapter (formula (60))

:

(42) n, = /x,2 ( - ~
. V^2" + (3V^2 “ V)-

In order, then, to obtain /Ig, we construct the functional deter-

minant of the ground-form a noted in that chapter, and the

similarly employed just now

:

Sa Sa

¥2
SN^ SNi

¥i ¥2
We thus obtain

:

(43) 122 = (
~ + UA^^AgS + Ag^o)

+ ^2M-20A,U23-10Ai2A2«).

Finally, we bring forward as the the square of :

(44) 123 7A,^A/ - A/) + f.,
{kr ^ 7k,^k,^)f.

Now, applying our process of transformation first to /2^, there

arises—disregarding a numerical factor—the following as the

simplest form of the third degree in Aq, A^, Ag

:

(45) F, = 2Ao'(2Ao" - 3A
0
A

1
A2) -A/(3AoA22 + A^^yA,'{3A,Ai^ + A,^).

We now treat 12,^ (43) in a similar manner, but subtract from

Of course we could also proceed in just the same way in the case of co-

gredients ; we should not, however, obtain any results different from those

now communicated, and should only have to repeat once more the process of

polarisation which led us above to A » B, C, D*
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the result, for the sake of simplification, a certain multiple of

A . Thus we have

:

(4()) b\ = 2A,' (
- A, + - A,^ - A.,^)

+ A/ (16Ao-A;^ - 8Ao“Ai=^ - 4A,AiA," + 2Ai^Ao)

+ A/ ( 1 OA^-^A;^ + 8Ao‘A/ - 4AoA,»A, + 2A^A/).

We finally deal with 12.^ (44), and obtain, after subtracting

proper multiples of A^ . }\ and A . b\:

(47) F, = 2A; (32A/A;^A/ - 4A,^ (A,^ + A/>) - 1 GA^A.^A/

+ 3A,A. (A/‘ + A./))

+ A/ ( - 32Ao*^A;^ + 48A/Ai^ - 32A^,^A,A,^ - ^A,-A^^A,
^

+ 1 4AoA,2A.^ - 3A^'^A.;^ - A.’)

+ A.,' (
- 32A,sA;'^ + 48A,^A.>" - 32A,^A/a^ - iA^^A.K^

+ 14A,A,4A/ + 3A/^A/’ - A^^).

On introducing the thus obtained in (39), and

through this in (38), our task is completely accomplished in

the contragredient case also.

§ 10. Group-Theory Significance of Oogredience and

(JONTRAGIIEDIENCE.

Wo now return to the group-theory question, to which we
were led at the beginning of § 8. The linear substitutions of

the B^s are, at all events, simply isomorphic with those of the

A's
;
we have finally to deal with the problem of investigating

in how many different ways the group of sixty icosahedral

substitutions

:

(48) V„ V„ . . . V,,

can be co-ordinated to itself in simple isomorphism. Two sorts

of this co-ordination are given by cogredience and contra-

gredience
;
we will show that all others are essentially reduced

to these.

I must state at the outset what rearrangements of (48) will

be regarded as non-essential. They are those rearrangements

which arise from transformation in the sense previously

explained (I, 1, § 2), which, therefore, replace any by

(V'y~^VjcV', where by F' is to be understood any operation

of (48). In the applications, namely, which we have to make,

we can always regard such a rearrangement as a mere change
R
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of tho system of co-ordinates. If we replace the variable z

which is subjected to the icosahedral substitutions (48) by

z^=VXz), (V'y^'^VuV' will appear throughout in place of Vj^;

and similarly if we regard the VjJs as the ternary substitutions

of Aq, Aj, A2-

With the intention of again applying the “principle of

transformation ” just formulated, we now recur to the genera-

tion of the icosahedral group from two ojDerations S and T, of

which the first has the period 5, the second the period 2

(I, 1, § 12). We shall have determined the co-ordination

which we seek as soon as we declare what operations T\
are to correspond to S, 1\ Here aS" will in any case have to

possess the period 5. But, by I, 1, § 8, there are in tho

icosahedral group 24 operations altogether of period 5, of

which 12 are associated with aS", the other 12 with If,

therefore, in the co-ordination which we are seeking, we call to

our aid a modification of these by an appropriate transforma-

tion of the group, can in every case i)vt S' ccpal cither to S
or S^. If this is done. S' remains unaltered when we replace

Vft in general by S'~*'VfeS’' (j/= 0, 1, 2, 3, 4). Consider now the

fifteen operations of period 2 which are contained in (48). If

we choose p properly in the transformation just mentioned, we
can always reduce an individual operation of period 2 to one of

the three following

:

T, TU, U,

where U is defined as in 1, 1 , § 8 (compare I, 2, § G). If, there-

fore ,
m ha ve disjmed S' in the manner just mentioned, it is suffi-

cient to make T' equal to one of the three operations T, TU, U.

Compare now the rules of periodicity in I, 2, § 6. In accord-

ance with them, ST has the period 3, therefore S'T' must also

have the period 3. But now we find in the same place for ST,

STU, SIT, S^T, S'^TTJ, >8" respectively, the periods 3, 5, 2, 5,

3, 2 assigned. Hence S'T' can only be either S2' or S^TU.
There remain, therefore, hut two qmsihilities : in the one case we

put S':=S, T'=T, in the other S'^S^ T'=^T[T. If we write

down the corresponding icosahedral substitutions, we recognise

that S^ and TIT emanate from S and when we change e into

€®. 2'hHS we are, in fact, hrought hack to just the two cases, co-

gredienee and eontragredienre, as was to be proved.
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We can evidently repeat for every group the question which

is thus answered for the case of the icosahedron. If, then, a

form-problem is proposed which belongs to a group already

investigated, we can demand algebraical developments corre-

sponding to those given in §§ 8, 9. I will not enter here on a

general exposition of this, which would lead us beyond our sub-

ject (see, however, I, 5, § 5). 1 will only remark that the case

of cogredience (which, of course, always exists) can always be

solved by the construction of polars, when among the invariants

of the form-problem there is one of the second degree. This

occurs especially in those form-problems of which the variables

o'Qy are simply permuted, and which are therefore

represented by equations of the degree with unconditioned

coefficients. If for these we employ the invariant in just

the same way as we applied the conic just now

(§ 9), wo are in a position to make the differential coefficients

. . . o covariant to where by
<f>

is to be

understood any form which is invariant with respect to the per-

mutations of the group. We are evidently led back, as a

consequence of this method, to exactly the tramfor^nation of

Tschinihaus when we take into consideration, in particular, as

the functions (j) the sums of powers of the .//s. The old process

of Tschirnhaus is therefore, together with formute (38), em-
braced by a general method relating to form-problems of a

certain class. Compare with this what was said in II, 2, § 7, on
the co-ordination of points and planes.*

§ 11. Introductory to thk Solution of our Problem.

We will maintain for a moment the analogy with the

Tschirnhausian transformation, and accordingly consider the

coefficients -Bj, in (39) as undetermined magnitudes.

If we then compute for the corresponding B^, B^, Bg, the ex-

pression Bo^+B^Bg, we obtain a quadratic form of these

We can generalise somewhat the remark in the text. In order that the

construction of polars may aid in the attainment of our object, it is not

necessary that an invariant form quadratic in the x's should exist; the

presence of an invariant form bilinear in the as, as'^s is sufficient. In this sense

the formulas (35) come under this head, for in their case such a bilinear

Invariant is forthcoming in the determinant {\^i
-
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magnitudes which we can reduce to zero by many different

assumptions of We can then, however, as we know,

determine Bq, Bp B2
directly by means of an icosahedral equa-

tion. This being done, we again apply the formulm (39) or

(3(S), except that we interchange the letters A and B, and

therefore express Aq, Ap Ag in terms of Bq, Bp Bg* The co-

efficients iZp 7^2* then necessarily rational functions of

the original yl, 6', 77, and those irrationalities which we may
have introduced in making Bo^+ B^Bg— O

;
the orif/inal problem

of the A*.s' is therefore mixed throuejli the intervention of these

irrationalities and the icomhedral equation apiii\q)riate to the

B’.s*

I have only explained the general process in order to allow

the applicability of formula (39) to come to light. The course

which we will now pursue in order to solve tlio problem of

the A’s, i,e. to reduce it to an icosahedral equation, is a much
simpler one. We had :

(49) 2A() = — (^1^2 ’1’ ^
2
^

1

~ ^2^2 > ^2 ~ “
>

nr will now attempt the solution hif siqposinf/ the icosahedral

\ A.'

equation coiistruetcd on which dequiJids the f or resqwcfively

,

which here occurs. Geometrically speaking, this means that wo
seek to determine the point A by means of one of the two points

on yl= 0 in which a tangent from A to the conic A meets

it, while the general method just sketched—though here we
suppose the functions in question as homogeneous functions of

Aq, Ai, Ag—co-ordinates to the point A any one covariant point

lying on A— Of and then considers its co-ordinates Bq, B^, Bg,

determined not merely relatively, but absolutely.

The analogy of our statement of the question with that which

we have dealt with in the preceding chapter, according to Herr

Gordan^s plan, is obvious. In both cases we are concerned,

as we know, with a form-problem of which the variables are

bilinear forms of two series of binary variables which are simul-

taneously subjected to the icosahedral substitutions
;

in both

we seek the solution by returning to the icosahedral equation

on which the variables of the one series (in so far as their ratios

We have already mooted the same point (when speaking of the Jacobian

equations of the sixth degree) in II, 1, § 6.



26 iTHE yACOBfAN EQUATION

are concerned) depend. We shall accordingly be able to follow

precisely the course of ideas which was developed in §§ 6-11 of

the preceding chapter
;
the individual steps are so simple that

it appears superfluous to build up in detail the seveial results.

We begin with enumerating these homogeneous integral

functions of Ag, and A^', which remain unaltered for the

simultaneous (here cogredieiit) icosahedral substitutions of

these magnitudes {invariani formn). We have placed side by

side in formula (35) the two simplest forms linear in the A'^s

:

they were the following two

:

(50)

— A^Aj^^ — sjA ^

p,

(where the computed value of the first form is immediately

assigned, and the letter P is henceforth introduced for the sake

of brevity). To these belong further, as we remarked in § 2.

all other forms which arise from ./’(A^ Ajj), i/(Ai, A2),
T{X^y Ag^

by polarisation with respect to A^', A
2
^* ' Our Ay By Cy Dy the

“known” magnitudes of the form-problems, are those com-

binations of tlie forms here mentioned which are symmetrical

in the A, A''s.

We consider now generally the infvrvhanjje of the A, A'’Sj

i.e,, the replacement of A^ A2 by A/, A
2
', and conversely. If an

invariant form remains unaltered for the interchange of A, A',

it is an integral function of Cy B

;

if, on the other hand,

it changes its sign on permutation, it is the product of ^

A

(50) and such an integral function. If an invariant is only of

the same degree in the A, A”s, it can always be put into the

following form

;

(51) \ ; A/, A/) = G{A, B, G, D)+JA. H{A, B, C, D),

where the integral functions (?, Hy are defined by means of

the following equations

:

^521 / _
^ '

\
2 F{k„ k,

;

A/, A/) - F(k,', A,'
;

Aj, A,).-

The general course of our method of solution will now be as

follows. We have first to construct the icosahedral equation

:

* I do not further press the point that with the forms thus enumerated the

entire system of the invariants here coming under consideration is exhausted.
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(53)
lt28/s(A„ A,)

’

on which depends, and then to express the invariant

P (50) in terms of Ag, JA, and the known magnitudes.

Both steps are accomplished by appropriate applications of

formula) (51), (52). We then consider the formula) (50) as

linear equations for the determination of A/, Ag': the fiiml

fornudcc for Aq, A^, Ag, ft^hich vjc sought arc given on intro-

ducing in (49) the Viducs mhich arc found. Here Aq, A^, A2 ,

necessarily appear as particular linear combinations of the

linear invariants and P.

§ 12. CORUESPONDJNO FoRMITLAO.

The formula) which are required in virtue of the general

method just given are now to be developed so far as appears

desirable for giving preciseness to the course of our ideas. I

will here again (as in the preceding chapter) denote the forms

originally given us by the index 1, the others, which arise from

them by interchange of the variables A, A', by the index 2.

Higher indices may denote the degree of integral functions

of the arguments adopted in each case, on the understanding

that these arguments are considered as functions of Aq, A^,

We begin with the computation of Z (53), or, as we now
say, of Zy We have evidently, in order:

(54) 1 1728/^s 1728////

_ (H/// + + (H/// - Hlf^
3456/^%"

_ B, 0)+ JA. D. G,fA, B, C)

3456 [G^.fA, B, C)f

Besides (51) and (52), I have here made use of the fact that,

among the given magnitudes A, B, C, D, only D is of uneven

degree in the A^s, and also that is an integral function of

Ay B,C, The integral functions G^^y ^ remain

to be estimated by recurring to the explicit values of the magni-

tudes in Aq, Ap A2 ,
which come under consideration. The com-
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putation in question is, of course, somewhat formidable
;
I omit

it, because it furnishes nothing of special interest.

We now turn to the computation of P, or rather of Pj.

The form P^ is of the first dimension in the A'^s, of the eleventh

in the A’s ; if we wish to employ a process like the one applied

to we shall have to first affect Pj witli such factors dependent

only on A
2 ,

that the aggregate which arises is uniformly of

the first dimension in the A, A'^s. We put accordingly

;

(55)

and then have, in order:

(56)

pr\ m >

‘
1

^ _ Pt • _ p, • JIJ,
'
1 \ 2', 2 ’.,

^ (P,/2,2’,.+ P.,22.,2’,) + (Pi//,7’.,- P.,7/.,r,)

n\’i\

D . G,,IA, li, C)+ . G^{A, Ji, 0)

2r,2A,'B, C)

where the integral functions G^, remain to be evaluated.

On substituting, we have

:

(57) p = .
n.G, ,{A, B, 0)+ JA. GJA, B, C)

‘ir;^(A, B, V)'

We now seek, as we suggested, to obtain th(! from ^A
and Pj. The formula) which arise run simply

:

JA

Comparing it with (49) we have finally

:

2A„= - VJ-2P. .

(58)

v=
12/1

’

A.,,

12/1

’

(59)

A

A

A VX — P

V,
12/,

12/1

where we supijose for the value (57) introduced.
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We can in many respects modify the method of solution thus

given if we like to take up once more the course of development

adopted in tlui preceding chapter. Substitute, for example, in

(59), instead of tlie magnitude (55), so that the A’s de-

pend only on ^^-4, and : Ag, then compute the correspond-

ing problem of the A’s regarding these three magnitudes as

arbitrarily given, and company it with the proposed problem.

We thus obtain for p^ and (53) determining equations which

can be applu‘d to the actual computation of them. We can

also, as we did in the preceding chapter, interpret geomt*trically

each step of the method of solution. Li‘aving all these things

to the reader, I emphasise, in conclusion, the appearance of

s/a. In the sense of our previous mode of expression, this is

an acccHsorj/ irraiionallfy, i.e., one which is not rational in the

magnitudes Aq, A^, A2
which are to be computed.* We shall

soon see that an irrationality of this kind is, in fact, indispens-

able if we want to reduce the problem of the A’s to an icosa-

hedral equation.

* In an analogous sense, the notion of the accessory irrationality is trans-

ferred generally to form-problems.
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CIIArXER V

THE GENERAL EQUATION OF THE FIFTH DEGREE

§ 1. Formulation of Two METnoj)s of Solution.

Turning now to t.ho general equation of the fifth degree, let

us proceed with tlie actual problem of solution.* Wo are in

principle conceriud witli the construction, from five magni-

tudes .'/’q, wliich are subject to the single condition

S>v~0j of a function , . . ,/;^)==A, which undergoes icosa-

hedral substitutions for the even permutations of the ,7^’s. llow

we shall afterwards represent the individual ./.‘^s in terms of A is

a question in itself whicli at first we regard as a secondary one.

Limiting ourselves first to the main question, let us take a geo-

metrical interpretation as our basis
;
we regard . r/'^,

as we did above, as the co-ordinates of a point in space, A as

the parameter of generator of the first kind on t;he canonical

surface of tlie sec\.nd degree Our problem then be-

comes: to any point x in fipace to co-ordinate by ajrprapriate

construetion a generator A in a comriant manner, i,e,, to co-

ordinate in such wise that the relation between the point and

the generator remains unaltered when both are simultaneously

subjected to the even collineations.

A first solution of this problem arises of its own accord, so

to say, on the ground of the developments already given.

Nanuly, we shall at the outset exhibit in covariant relation to the

point X apointy of the canonical surface, and then take as generator

A the generator passing through y. Therefore, to characterise at

once the algebraical treatment of the general equation of the

fifth degree which arises from this, ^ve shall transform the

The develoijments given in the following pages are contained in their

general features in my oft-cited works in Bd. 12, 14, 15 of the Mathematische
Annalcn, but they are here for the first time expounded in a connected form.
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(jeiu.rai equation of the fifth degree hy an apyroqrriate Tschivn-

hausian iransfonnation into a canoniml equation, and then solve

this in aeeordance with the method erponnded in the third chaider

of the present part,

Tlu‘. Tscliirnhaiisian transformation whicli is rt^quirod in the

process now d(‘scrib(id lias be(ni mcmtionod in greater detail in

II, 2, § 0, and tliere fonnnlated in the following manner : we
first co-ordinat(‘d to the point a straight line in space which

joins two rational points covariant to .r, and then chose as our

point y one of the points of intersection which this straight

lim* lias in common with the canonical surface. Here, gener-

ally speaking, an accessory square root would be necessary for

separating the two points of intersection. If we wish to

exprt'ss ourselves briefly, we can even put aside the point y in

our description of this construction. Our object is then simply

to employ one of the two generators of the first kind on the

canonical surface, which meet a straight lin(‘- which is covariant

to .r. The accessory square root diqxuids on the fact that along-

side of a first g(uii'rator of this kind which we call A, there is

always a second associated with A, which we will denote by A'

for a moment. Expressing ourselves thus, we recognise the

possibility of still further postponing the use of the accessory

irrationality. Instead of seeking at once the ieosahedral equation

on which A depends, wc shall first estahlish the equation system hy

which the symmetric functions of X, X' arc determined, and not till

later deducefrom th is equation system the aforesaid ieosahedral equa-^

tion. But this is manifestly the same as saying that we return

to the developments of the fourth chapter which we have just

concluded. In fact, our A, A' are cogredient variables; the

equation system of which we speak is therefore an equation

system of the A^s, in the treatment of which we shall, moreover,

be led at once, as we shall see, to the homogeneous arrange-

ment, i,e,, to the form-problem of the A^s^ At the same time,

the ieosahedral equation on which A depends is the same as we
should anyhow use in the solution of the problem of the A's.

We therefore find a second method of solution of the general equa-

tion of the fifth degree, in which we turn to account the develop-

Clients of II, 4, exactly in the same way as we do those of 11, 3 for

the first method of solution.

For the rest, the formulation which we have just established
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for the second method of solution is unnecessarily precise.

Recalling the considerations which we have given in II, 2, § 9,

wo recognise that we can co-ordinate to the point instead of

a straight line, a general linear complex in order to effect the

second method. TJic (jeiurator>i X, X are then those two which

belong to this linear eoiwplex. The explicit formula3, which we
shall establish later with a view to giving exactness to the

second method, remain undisturbed by this generalisation
;
we

shall therefore only quite cursorily return to the special formu-

lation which we just now began.

We have now a twofold task in the following paragraphs.

In the first place, we shall have to establish in detail the

formula) which correspond to the two methods of solution, the

feasibility of which we ascertained; and then we will bring

the totality of those researches which we summarised in II, 1

into conformity with our own reflexions. In this respect the

relationship of our first method of solution with that of Bring

and of our second method with that of Kronecicer is evident at

the outset. By using a theorem which we previously established

(I, 2, § 8) concerning the icosahedral substitutions, we then

succeed in proving also that fundamental proposition of the

Kronecker theory to which we referred in II, 1, § 7.

§ 2. Accomplishment of our First Method.

In order to give exactness to our first method, let

(
1 ) + ax'^ + CX +

be the given equation of the fifth degree (in which we have

taken = We then further put, in accordance with

II, 2, § 5.

(
2) yy -p . + <7 . + r . + s .

where and compute This is a homogeneous

integral function of the second degree of p, <7, r, s :

(3) ^ (P, g, n «),

of which the coefficients are symmetrical integral functions of

the oj’s, and therefore integral functions of the coefficients

a, 6, Cy d occurring in (1). We tidsh to find a solution system of
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the equation 4>==0 which re^nnins unaltcml for the even perinu-

tations of the xs.

Let iis first remark that tlie p, q, ?*, s required cannot pos-

sibly be equal to rational functions of ./j, . . . This

follows from the proof, to be presently effected, that the' use

of an accessory irrationality, at least therefore an accessory

square root, is indispensable for carrying out our method.*

We return the more readily to the geometrical construction

with the covariant draiqht linen which we described just now,

and for which we have given the necessary formula3 in II, 2,

§ G. Let

:

1\, a,, 7?i,
xS,

;

be two series of four magnitudes which depend rationally on

the ri'^s, and in such wise that they are not altered for the even

permutations of the ./j’s, and which are therefore rational func-

tions of the coefficients a, h, r, d of (1) and of the square root

of the corresponding discriminant.

We then put in (2) as before

:

(4) p = pf\ + q = p^ + pMoy V = PiRi + ^ = Pi^i + pA»*

By this means ^ [formula (3)] is transformed into a binary

quadratic form of the p^, p^s, the coefficients of which are

rational functions of the known magnitudes : we put 4>=0, and

determine p^, froni the quadratic equation which arises,

whereby the proposed accessory square root is introduced.

Then let us substitute corresponding values of /jg, in (4) and

(2) respectively, and compute the canonical equation which

results for the y’s, which we will briefly denote as follows

:

(5) + 5ay2 + + y = 0.

Thus we have made every arrangement necessary for the imme-

* Conversely, if we proved the theorem in the text (concerning the irra-

tionality of p, q, r, s) directly, we should have a new proof of the necessity of

the square root in question. Namely, could an icosahcdral equation be pro-

duced from (1) without employing accessory irrationalities, we should be able

to construct from this one of the infinitely many corresponding canonical

resolvents of the fifth degree, and then obtain, by collecting the formulas, a
transformation (2) of which the coefficients p, 7, r, a would be rational func-

tions of the x*s, unaltered by the even permutations of the as’s.
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normal equation with only one parameter, he thinks that a new
accessory irrationality has to be introduced by the intervention

of an auxiliary equation of the third degree. I, on my part,

maintain that tlie original process of Bring should be given up,

and replaced by our first method, which retail the essential idea

of the Briny method, Tlie advance with which we are con-

cerned finds significant expression in the ‘‘deficiency’^ of the

figure to be employed for the geometrical interj)retation
;
the

family of rectilinear generators (lying on the canonical surface)

of the one kind or the other form a manifoldness of deficiency

^==0 ;
the deficiency of the Bring curve is equal to 4.*

As the crowning point we shall embrace in the critique thus

formulated the j)rocess of Ilcrmite also : if \re wish to apply

elliptic functions to the solution of the canonical equation of the

fifth degree, this is done most simply hy using the formula given

in I, 5, § 7, for the root of the corresponding icosahcdral equa-

tion,

Hormite’s use of the Bring form can only come under con-

sideration thenceforward if, instead of the rational invariant

to which the right-hand side of the icosahedral equation is

equal, we employ the corresponding In fact, we saw in II,

3, § 14, that the cubic auxiliary equation of Bring becomes

reducible w^hen we consider k as known. I will also here bring

into special prominence the advance which is made by our

having deduced directly from the form of the icosahedral equa-

tion the possibility of solving the icosahedral equation by means
of elliptic functions. {Vide I, 5, § 7.)

§ 4. Preparation for our Second Method of Solution.

The geometrical opening wliicli we have given for our

second method of solution requires us to establish the quadratic

equation on which depend the two generators of the first kind

on the canonical surface which belong to a definite linear com-

plex. We have solved this very problem in II, 2, § 10, for any

* Starting from the value of p and the general theory of curves with — 4,

we can show (as I cannot do here in detail) that Bring’s cubic auxil ary equa-

tion is, in fact, indispensable if we would determine a point of the Bring

curve, i.e., employ the trinomial equation y®-f-5/3yH-7= 0 as normal equation.
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icoaaliedral substitutions, are, by what precedes (I, 4), the

following

:

7 (^)‘

Here while on the other hand ^ 0, so

that instead of i\ we will introduce the combination ^ 2r.
0

Then :

(7 )
X, =j/' . u, + if V. + I

Jt + s"

where f/\ r", .9
" ar(> coefficients of th(^ same naiure as

P\ (l\ r', s\

I have*, appended this new formula of inversion really for the

sake of comph^teness. In fact, it is just this which appears to

me to be the peculiar advantage of our first method—that when
fonnulat(^d in tlie way represented by (6) it is discomposed into

two separate parts, of which the first, which is concerned with

the connection of the general erjuation of the fifth degree with

the canonical equation, has throughout quite an elementary

character. Wc^ can also consider formula (6) as more simple

than formula (7). Namely, if we consider Q^y . . . 8^

in (4) as rationally dependent on a, hy r, d alone, not on the

square root of the coiTesponding discriminant, then the square

root of the discriminant will also be wanting in the coeflBcients

of (6), while it ni'cessarily appears in the coeflicients of (7), as

also in the right-hand side of the icosahedral equation for A.

§ 3. Criticism of the Methods of Bring and Hermite.

Before going further, we shall compare our first method of

solution with the closely related kinds of solution which Bring
and Hermite have respectively given. The details which here

come under consideration have already been developed in II,

3, §§ 1 3, 14. Noin that we revert to these, we must describe our

method as an essential simplification of the Bring method. Bring,

as we do, transfonns the given equation of the fifth degree

into a canonical equation
;
he, too, employs the rectilinear gene-

rators which lie on the canonical surface. But beyond this he

comes to an unnecessary complication; in order to obtain a
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normal equation with only one parameter, he thinks that a new
accessory irrationality has to be introduced by the intervention

of an auxiliary equation of the third degree. I, on my part,

maintain that tlie original process of Bring should be given up,

and replaced by our first method, which retail the essential idea

of the Briny method, Tlie advance with which we are con-

cerned finds significant expression in the ‘‘deficiency’^ of the

figure to be employed for the geometrical interj)retation
;
the

family of rectilinear generators (lying on the canonical surface)

of the one kind or the other form a manifoldness of deficiency

^==0 ;
the deficiency of the Bring curve is equal to 4.*

As the crowning point we shall embrace in the critique thus

formulated the j)rocess of Ilcrmite also : if \re wish to apply

elliptic functions to the solution of the canonical equation of the

fifth degree, this is done most simply hy using the formula given

in I, 5, § 7, for the root of the corresponding icosahcdral equa-

tion,

Hormite’s use of the Bring form can only come under con-

sideration thenceforward if, instead of the rational invariant

to which the right-hand side of the icosahedral equation is

equal, we employ the corresponding In fact, we saw in II,

3, § 14, that the cubic auxiliary equation of Bring becomes

reducible w^hen we consider k as known. I will also here bring

into special prominence the advance which is made by our

having deduced directly from the form of the icosahedral equa-

tion the possibility of solving the icosahedral equation by means
of elliptic functions. {Vide I, 5, § 7.)

§ 4. Preparation for our Second Method of Solution.

The geometrical opening wliicli we have given for our

second method of solution requires us to establish the quadratic

equation on which depend the two generators of the first kind

on the canonical surface which belong to a definite linear com-

plex. We have solved this very problem in II, 2, § 10, for any

* Starting from the value of p and the general theory of curves with — 4,

we can show (as I cannot do here in detail) that Bring’s cubic auxil ary equa-

tion is, in fact, indispensable if we would determine a point of the Bring

curve, i.e., employ the trinomial equation y®-f-5/3yH-7= 0 as normal equation.
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surface of the second degree, thotigh only for the case, we rmust

admit, of a 'particidar system of co-ordinates. We had then

taken as the equation of the surface the following

:

(
8 )

and had then defined the parameter A of the generator of the

first kind in the following manner:

(9)
X, A.,;

and, finally, understanding hy the co-ordinates of the

linear complex, we had obtained the equation

:

( 10)

I add here at once the corresponding formuho for the generator

of the second kind. We found as the defining equation of the

parameter :

(H) 1^3 = /^!

and as the corresponding quadratic equation

:

(12) - ^34/ii* + (^1,33 + = 0.

We now recall the method by which we introduced the

parameters A, // for the canonical surface in particular, in II, 3,

§§ 2, 3. This was done in exact agreement with (8), (9), (11),

only that instead of X^, X^, X^, X^, we wrote p^, p^
respectively, where p^^ denoted the expression of Lagrange :

(13) = + • iri + €*>. .r^ + e^A* . + . x^.

We can therefore retain equations (10), (12), unaltered, provided

we proceed throughout on the basis of Lagra'nges system of co--

ordinates in dealing with them.

In II, 2, § 9, where we co-ordinated to the point x a co-

variant linear complex in the most general manner, this latter

supposition has not been made; the co-ordinates there given

for the complex

:

rt,4,

=

^^c'-

I, m
(
14)
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[where the denote any rational functions of the coefficients

a, by c, d and the square root of the corresponding discriminant]

are related to the fundamental pentahedron, as are also the

point-coordinates x themselves. Our first task is therefore a

transformation of co-ordinates : we must determine the co-ordin-

atcs which the complex (14) assumes if we introduce, hy means

o/(13), the ex2)rpssions To this end I will denote those ^^’s

which belong to the points by 7/'“^ We then

have

:

(15)
yk_ ,«+^) _4)

t, k

where on the right-hand side each combination {i, k)=^{k, i)

occurs once. We now add the six equations which we obtain

in this manner for the different combinations (I, m)=(m, 1),

after we have multiplied each byc*’’^ [formula (14)]. There

thus remain on the left side the required, while on the

right side sets of six terms are condensed into the (14).

Hence the formulm of transformation which we seek run thus

:

(16) =

I, A

We now introduce the so obtained into (10), (12). I

will write the quadratic equations which here arise in the form

which we just now established in II, 4

:

n 7^ / + 2Ao\X, - A,V = 0
^ ^

\W + 2Ao>,/x,-A,>/ = 0.

We then have

:

(18)

I

2Ao = + ^23 -

Ai = + ^42 =

Aj— --^ig
t, k

O'ik^

s

likewise also

;
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(19)

[’2V =-^23 - ^ 14
= +

», k

V=+V
t. A:

A/=+2li,
i,k

§ 5. Of the Substitutions of the A, A'’s

—

Definite

Formulation.

In virtue of the geometrical -considerations which we have

placed in the foreground, it is manifest that the ratios of the

Aq, Aj, Ag (18) just established, undergo exactly the same

linear substitutions for the even permutations of r/’g,

as the ratios of magnitudes established in the preceding chapter,

and denoted by the same letters
;
it is likewise evident that the

ratios of the A'^s introduced in (19) behave contragrediently to

the ratios of the A^s. I say now that this correspondence holds

good if we regard, instead of the ratios of the A, A'^s, the

A, A'^s themselves. It would not be hard to prove the accuracy

of this assertion on general grounds. We shall presently, § 9,

indicate the method of doing so ;
meanwhile let us be satisfied

with verifying its accuracy from the formulae. We have

evidently only to take the two operations aS, T into considera-

tion, all the others being composed from these by iteration and
combination. First, as regards the even permutations of the

a;’s, we have in II, 3, § 2, introduced for aS, T the following:

(
20

)

S . Xy

2 Xq = Xq^ = ajg, iTg' =

Corresponding to them, we obtain definite permutations of the

unit’s (14), and, if we take account of these, we have the follow-

ing substitutions for the A’s defined by (18)

:

(21 )

1^:

T:

^0 “ ^0’ ~ Ag — cAg
y

f

s/b . A^y' — Aq + Aj + Ag>

v/5 . A/ = 2Aq + + £3)Aj + (€ -f €4)Ag,

V5 . Ag' = 2Ao + (€ + €4)Ai + (£2 + €3)A2,

i.c.y exactly the same substitutions as we have given in II, 4,
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§ 2.* As regards, however, the contragredience of the magni-

tudes A' (19) and the A’s (18), it is sufficient to remark that

the values of the A'’s proce(‘d from those of the A^s if in the

latter we change e into throughout.

We now suppose any of the invariant forms of the A, A^’s

(18), (19) constructed, such as we described in the preceding

chapter
;
either therefore the exx)r(‘ssions B, G, 1), from the

A’s alone, or from the A, A^’s simultaiu‘ously the functions

linear in the A'^s, which we have considered in § 9

of the same chapter [see especially formulae (45), (46), (47).]

On introducing for the A, A'’s the corresponding values in

Xq, Xp . . . .>4, we obtain throughout rational functions of the

,7/s such as do not alter for the even permutations of the .-r’s,

and which therefore admit of expression, by tlie lielp of elemen-

tary methods whicli we do not. carry out, as rational functions

of the coefficients a, b, c, d occurring in (1), and of the square

root of the corresponding discriminant. In order to formulate

our S(‘Cond metliod in a definite manner, we at first employ

only the problem of the A’s, and thendore the values of tlie

magnitudes just mentioned, A, B, C, 1), We then follow the

developments which we have given in the two concluding

paragraphs of tlie preceding chax)tt*r, and construct, after

adjoining the accessory irrationality s/A, corresponding icosa-

hedral equation for the determination of A. The only question

which remains is how we will conversely express the roots

x^, . . . x^ by tlu; lieix) of this A. This is to be dealt with

in the following paragraph.

§ 6. The FouMULii^: of Inversion of our Second

Method.

In order to solve the problem which still remains, no less

than three methods present themselves, viz., according as we
wish to solve our problem at one stroke or resolve it into tw^o

or three steps.

In the former case we make immediate use of the formula

* The letters Ao', A/, A^' are employed in (21) in quite a different sense

from that of (19) ; as 1 do not recur hereafter to (21), no misunderstanding

will, 1 hope, arise from this.
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(7), whicli I ?igaln exhibit (laying aside now the accents there

employed for yy, r, .s)

:

(
22

)
iTy == p . + (/ . % -I- r . u^Vy

Here (], are rational functions of a, b, c, d of the square

root of tlu*. corresponding discriminant, and the accessory square-

root A.

In the second case we first express Aq, Aj, Ag as we did in

detail in § 12 of the preceding chapter, in terms of the root A

of the icosalu^dral equalion. We then further bring to our aid

the lowest five-valu(‘d integral functions of the A^‘3. Accord-

ing to § 5 of the preceding chapter, these are

:

S/, Sy^y SySy'y

Here again 2S=21S'=2SS'=0, while is different from zero,

so that for the expn'ssion of the i?v’s wo will introduce, instead

of the individual Sy^’s, the combination We have

then again formulae of the following kind :

(23) ar, =?/ . S, + <?' . 8/ + r'. (8,^ _ + s' . 8,8/,

where j/, (/, r', s' arc rational functions of by c, d, and the

square root of the discriminant, hut no longer miiain Vie cu'ces-

sory square root ^A,

Finally, in the third case, we first suppose Aq, Ai, Ag again

computed from the root A of the icosahedral equation; but

then, instead of seeking the directly, we first seek the

corresponding A^', A/, Ag' (19). We effect this by calculations

analogous to those which we previously made on expressing

the forms F^y just mentioned, which depend on the

A, A'’s, as functions of a, by c, d, and of the square root of the

discriminant, and determining Aq', A^', Ag' as unknowns occur-

ring linearly. This being done, we seek the simplest possible

functions of the A, A'^s, which are five-valued and at the same

time symmetric in the A, A'’s. Wo find a first function of

this kind if we square the y, of II, 3 :

yy = £4''
. Xj/Xi - £3-

. + €2v . Xj/ig + £, . X^/Xg,
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and submit it to the process of transference continually em-

ployed in § 2 of the preceding chapter. In this manner there

arises a form bilinear in the A, A'’s

:

(24) Xv = 2A/(c4*'Ai + + A/( - 2e^AQ + A.)

+ A/( - 2c2''Ay - c^Ai + Aj,).

As other functions with the same properties, we will employ the

powers where, however, we must consider that

none of the power-sums vanish identically.

We shall therefore do best to write the formula which corre-

sponds to (22), (23), with an extra term as follows:

(25) a*. =i." . X. + q"
. X." + r" . x.^ + -s"

• X.' +

Here p", (/\ r", s", V' are again at the outset rational functions

of rt, ft, c, and of the square root of the discriminant. More-

over^ ire can arrange so that theg shall he mereh/ rational funetions

of a, ft, c, d. We have then merely to make the in the

original method (14) themselves depend rationally only on

ay ft, r, d,

I have brought together these data without detailed elabora-

tion, because they, so to say, of necessity 2)roceed from the pre-

vious developments. The third method of procedure appears

to me unquestionably the most effective. Decomposing, as it

does, the computation of the ./v’s into not less than three

separate steps, it employs three times over the same elements

of the typical exposition with which we have become acquainted

under varying forms in the three preceding chapters.

§ 7. Relations to Kronecker and Brioschi.

Our second method of solution is, as we have often said

before, only a modification and ejctcnsion of the Kronecker

method. In fact, we have seen in detail in II, 4 that the

problem of the A's, in the sense there explained, can be re-

placed by its simplest resolvent of the sixth degree, the

Jacobian equation. In the details many points of difference

certainly present themselves. I will here only call attention to

two, of which the second is the more important.

We first remark that the way in which Herr Kronecker,
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in his first communication to Hermite,* reduces the general

Jacobian equation of the sixth degree to the case -4=0, or, as

we now say, to an icosahedral equation, is different from the

method applied in the preceding chapter. Hot Kromchcr so

formulates his method that Aq, A^, A^ contain a •parameter v

which occurs linearly^ and which is afterwards so determined that

Ao^+A.A.,~A becomes zero. We can, of course,- combine this

idea with our formula3, viz., liy providing at the outset the

themselves [formula (14)] with a parameter A occurring

linearly. Then, instead of distinguishing by an accessory

square root the two generators of the first kind, which the

linear complex in question for any value of v has in common
with the canonical surface, we proceed thus: we first make
the complex variable in a linear fasciculus, and then fix its

position by the condition that it shall contain two coincident

generators of the first kind belonging to the canonical surface.

This condition itself brings with it an accessory square root.

I have in what precedes dispensed with the formulation thus

pointed out, because it is only applicable if we treat the prob-

lem of the A’s as a resolvent of the proposed equation of the

fifth degree, while I wished to first consider the problem of the

A*s independently of such connections.

We further remark that the yeneral formulae which Signor

Brioschi has given for the accomplishment of the Kronecher

method
j
formulae of which we gave a detailed account in II, 1,

§ 6, are throughout different from our formulae (18). Signor

Brioschi employs for the construction of his Aq, Aj, A2
six

linearly independent magnitudes u<x>, while wo use

twenty magnitudes between which the relations a^f— —ai^,

5'aifc==2’<riA:=0 subsist. Again we are satisfied with the same
i k

magnitudes, when wo wish to take under consideration the

A'’s alongside of the A^s, while Signor Brioschi would have to

annex six new magnitudes . . , uf. I will not pursue

this comparison, which only concerns the ejiernal configuration

of the formulae, any further. Let us remark, above all, that

our formulce (quite as much as those of Brioschi) are in any case

as general as they can he. If, namely, the A, A'^s are arbitrarily

given, wo can from them determine conversely the correspond-

See II, 1, § 6.
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ing and respectively [formula (14)]. We have only

to repeat the transformation of co-ordinates of § 4 in a reverse

sense.

The calculation in question takes the following form. We
have first, on returning from (18), (19), to the co-ordinates,

(16)

:

(26)

/ ‘^12
~ ^2 >

li4i^ = — Ay — Aq ,

^34 — Ai

,

^42

^23 “ ^0 *

We then replace the formula) (13) by their recqu’ocals

(27) 5a*i = € ‘.pi + c + ^ + ^

Hence

:

25 (c -M

e

- vi - /xA;J

where the summation on the right-hand extends over all

combinations (/i, v)=^{v, jx), and now, on multiplying the indi-

vidual equation by and adding the several terms for

(;, 7/1)=(m, 1
) :

(28) 25ff.t= . A^,

V

which is the formula wo sought.

I should like, in conclusion, to formulate concisely once more

the geometrical idea which lies at tlio root of our treatment

of the Kroneckor method, and which probably possesses far-

read ling significance. The first tiling is, that wo substitute

in general for the point x a linear complex, considering, there-

fore, instead of the equation of the fifth degree, an equation

of the 20th degree whose roots satisfy the oft-mentioned

relations The second thing is, that
i k

we refer this complex by means of (18), (19), to a new system

of co-ordinates. I will not enter * into any details concerning

the significance of the A, A'^s, but only remark that the first

Consult my essay in the second volume of the Annalen (1869) :
“ Die

allgemeine lineare Transformation der Liniencoordinaten.” Consider, in

particular, that the linear complex becomes a special one, i.f., a straight line,

when Ao® + AiA2= Ao'* + Ai'A./.
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ot tne two equations (17) vanishes identically when all the

A^s are equal to zero, the second when all the A'^s are zero.

Therefore, for the generators of the first kind of the canonical

surface, Aq —A^^A2
—O', /or the generators of the second kind,

A/—A/— Ag'^O. What is the object of this transformation

of co-ordinates ? By its means we arc^ enabled to replace the

equation of the 20th degree for the a^j/n by theform~prohleni of

the A’i* or the A^’s. In fact, we have seen that, for the GO even

collineations of space, Aq, A^, A 2 ,
and likewise Aq', A^', fiif,

are linearly substituted in their own right, and therefore as

ternary forms. Let us now remark that we could have

premised, a ^yriori, this property of our geometrical conception.

Namely, for the even collineations of space each of the two

systems of rectilinear generators of the canonical surface

becomes transformed, as we know, into itself. Hence of necessity

the two threefold families of linear complejces to ivhich these

systems of generators respectively belong are also transformed

into thrmselves for tluse collineations. But from this follows

directly the proj^erty of the A, A'’s describt‘d, i3rovided wo
further postulate that to every collineation corresjjonds a linear

transformation of the line co-ordinates. The possibility of

reducing our equation of the a^fs to a ternary form-problem

thus appears as an immediate outcome of the elementary intui-

tions of line geometry. This is the particular point of view

under which I should like to see the second method considered.

§ 8. Comparison of our Two Methods.

The two methods for the solution of the equation of the fifth

degree which we have contrasted with one another are, never-

theless, as follows from the considerations of § 1 of the present

chapter, very intimately related : we will here show that it is

only in non-essential points that they differ, inasmuch as every

icosahedral equation which is co-ordinated to a proposed equa-

tion of the fifth degree by virtue of the one method can always

be deduced by means of the other method.

The passage in this sense, from the first method to the

second, is immediately evident. In order to co-ordinate a

point y of the canonical surface as a covariant to the point x,

we have just now (§ 2) constructed first a straight line covariant
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to Xy and have then intersected with this the canonical surlace.

We can now start from this very line as the s'peeial linear complex

of the second method

:

we have only to compute the correspond-

ing co-ordinates If we, then, construct the corresponding

problem of the A^s, one of the two icosahedral equations by

which we can solve this problem will immediately become

identical with the icosahedral equation to which the determina-

tion of the ?//s leads.

The converse of this argument is not much more compli-

cated. We assume that we have by means of our second

method co-ordinated to the equation of the fifth degree an

icosahedral equation, and therefore to the point x a generator

X of the canonical surface. Then we can always find in a

rational manner (and tliis in many different ways) a point y
ndiich lies on the yenerator X : we need only, for example, make
the 7//s proportional to the WfXf^ or to the other expressions

which occur in the principal resolvent of tlio icosahedral equa-

tion. But this point is co-ordinated to the point x in any case

as a covariant
;

we have tluirefore at once a Tschirnhausian

transformation which co-ordinates to the yoint x a point y on the

canonical surface. If we now make this Tscliirnhausian trans-

formation the basis of our second method, we return of course

to the initial icosahedral equation.

In this sense we can say that in reality only one solntion

of the equation of the fifth degree is found. The difference

between the two methods which we proposed lies only in the

order of the individual steps. In the first method we give

prominence to the accessory square root, in the second we do

not introduce it till after separating the two systems of gene-

rators. Against this, the first method, as we have said before,

has the advantage of operating at first with quite elementary

material.

Howbeit the common foundation of the two methods in our

exposition appears to be first the theory of the icosahedron,

and then further the consideration of the rectilinear generators

of the canonical surface. That the first gives the actual

normal equations to which we must once for all reduce the

solution of the equation of the fifth degree, I cannot doubt. On
the other hand, I form a different estimate of our geometrical

reflexions and constructions, useful as they have been to us. I
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believe that we shall be enabled to develop the general theory

of form-problems algebraically, and in such wise that our

reduction of equations of the fifth degree to the icosahedron

appears as a mere corollary, and does not need to be established

in a special manner. I have myself attempted this in Bd. xv.

of the Mathematischo Annalen, where I brought the connection

between the problem of the A*s and of the equation of the fifth

degree—and, in fact, the formuloe of Brioschi appertaining

hereto as well as our formula) with the -to the single fact

that the substitutions of the A*s can be co-ordinated to the

even permutations of the ^//s simply and uniquely.* My reason

for not entering upon these matters in the foregoing exposi-

tion is that I do not consider these wider speculations to which

I have referred in I, 5 (§§ 4, 5, 9) as yet conclusive. I have

the more readily confined myself to geometrical constructions

of individual characteristics, believing that it is just by these

that we shall be able to pass to a true insight into the general

theory.

§ 9. On the Nec^essity of the Accessory Square Root.

We are at the end of our exposition
;
what wo have yet to

add concerns the necessity of that accessory square root which

occurred in our first method in the Tschirnhausian transforma-

tion, in our second method, when we wished to effect the solu-

tion, of the problem of the A’s. We shall show that this square

root is in fact indispensable if an icosahedral equation is to be

reached at all
;
we shall further prove that from this follows

that theorem of Kroncclicr's which we have mentioned in II, 1,

§ 7, ?ind which declares the general impossibility of a rational

resolvent with only one parameter for the ordinary equation of

the fifth degree.

In ordi‘r now to prove the first point, let us formulate our

assertion as follows. Let be any five variable

magnitudes,
<f>,

yjr, two inte'gral functions thereof without a

“ Ueber die Aufldsung gewisscr Grleichungen vora sicbenten und achten

Grade” (1S79). See especially §§ 1-5. The mode of expression in the text

supposes that to every permutation of the x's corre.sponds only one substitu-

tion of the A’s
;
single-valiiedriess in the reciprocal sense occurs also, but it

would not be necessary for the success of the algebraical process.
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common divisor. Then it is impossible, we assert, to choose yjr,

in such wise that

(29) X -

undergoes the icomhednd substitutions for the even 'permutations

of the x's.

The proof presents itself at once if we consider that the

original question, one belonging to the theory of functions, is

transformed by virtue of the arbitrary choice of the into a

question of the theory of forms. Namely, if, corresponding to

any pennutation of the t-c’s, the substitution formula

:

(30) X' =
xf/' y<f} +

were to occur, w(‘- could at once, on account of the arbitrary

nature of the r>t;*s, write

(:5
1 )

</>' = C(acl> + /3^), f = CXy^ + 8^),

understanding by C an appropriate constant, so that, therefore,

with the permutations of the (//s, the two integral functions
<f>

and yjr are transformed hilinearly. But now, as wo showed in

detail in I, 2, § 8, every group of binary substitutions which is

to be isomorpliic with the group of non-homogeneous icosa-

hedral substitutions contains, of necessity, more than GO opera-

tions, while to the 60 even permutations of the fl?’s not more

than 60 transformations of the integral rational functions
<f>,

can correspond. This is an insurmountable contradiction, and

therefore the method proposed in (29) is, in fact, proved to be

impossible, g.ed,^ The contradiction is not even removed if

we now assume 2a;=0, for every equation of the fifth degree

can be transformed rationally into one with 2^-«— 0.

For the sake of a better grasp of the essence of the proof,

let us compare the theory of the canonical equations of the fifth

degree. In them we have, besides 2a;=0, 2a/=0 also; let us

therefore write equation (30) as follows

:

(32) ^\y^ + ^) = + ^^),

* Cf. here and in the following paragraphs my oft-cited memoir in Bd. xii.

of the Math. Annalen (1877), and also my communication to the Erlanger

Societal of January 16, 1877.
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tlien, in the case of canonical equations, it is by no means

necessary that the two surfaces

</)'(7</) + 8^) = 0, ^'(a</) + /i^) = 0

are identical with one another, but only that they intersect in

the same carve the canonical equation of the second degree repre-

sented hy those conditions. Now we have in any case decided

that
(f>f

and so likewise yjr\ have no common divisor.

We shall also require that no factor shall be capable of being

detached when we modify the functions which arise from the

addition of proper multiples of Ztf, Nevertheless, the

curves of intersection of the canonical surface with ^'—0, yfr'=0,

may have a portion in common
;
this portion must be only an

incomplete curve of intersection^ and must not admit of being

traced out by a surface appended to the canonical surface. If

we assume that this is the case, no ground appears in fact for

the existence of formula (31) (from which we deduced the

contradiction). I must omit to work out in greater detail what

I have said, and to show that in fact, in the reflexions thus

given, our former treatment of the canonical equations of the

fifth degree is absorbed. The proof which we have given of

our primary assertion is extended without important modi-

fication to other cases also. First, we might substitute at once

the problem of the A^s in place of the general equation of the

fifth degree : wo learn that it is impossible, in reducing this

problem to an icosahedral equation, to dispense with the square

root ^

A

(or an equivalent irrationality) as previously employed.

We learn, further, that it is impossible to reduce the general

equation of the fourth degree, by means of rational construction

of resolvents, to an octahedral equation, or even, after adjunc-

tion of the square root of the discriminant, to a tetrahedral

equation.* Moreover, we can now make a practical application

* As regards equations of the fo^irth degree^ a solution can be effected in

their case, as I here cursorily indicate, with the help of the octahedral equa-

tion (or of the tetrahedral equation), which is, so to say, a blending of the

two methods, which for equations of the fifth degree are distinct. Denote
as before the roots Xq, a;i, X2 ^

Xq, which are to be subject to the condition 2ai;=0,

by quadrilateral co-ordinates in the plane. Then we have the canonical conic

2«*=0, and we saw above (II, 3, § 2) how a point belonging to it can be

determined directly by an octahedral equation or a tetrahedral equation. We
shall now co-ordinate to an arbitrary point x of the plane a point y of the
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of our train of thought. In this respect I only remark that tne

property of Aq, A^, Ag, which was described just now (§ 5), may
be deduced in the way thus indicated.

§10. Special Equations of the Fifth Degree which

CAN BE Rationally Reduced to an Icosahedral

Equation.

We must now interrupt our general considerations, and

make mention of special equations of the fifth degree which

furnish an exception to the theorem just proved. In II, 2, § 4,

we have given a geometrical interpretation of the resolvents of

the fifth degree, and have seen that they can be represented by

two half-regular twisted curves of deficiency zero. Our object

now is to reverse this result. Let

:

(33) F{x,Z)=^0

be an equation of the fifth degree with one parameter which

admits of an interiiretation of the kind mentioned, I assert

that we can always reduce it by rational means to an icosa-

hedral equation.

The proof is essentially the same as we have given in a some-

what different form in II, 3, § 1, in considering the canonical

equation. By hypothesis the five roots of (33) admit of repre-

sentation as rational functions of an auxiliary magnitude A

:

(34)

in such wise, that for appropriate variation of A the a.^’s under-

go any even permutation. We must now apply the proposition

from the theory of rational curves, that this A can always be

canonical conic as a covariaut, by drawing from x the two possible tangents

to the conic, and choosing one of the two points of contact. We can then

establish the octahedral equatiori (or tetrahedral equation) on which y de-

pends, and hence by inversion find &c., &c., all in strict analogy with the

developments which we have opened up in the two concluding paragraphs of

the preceding chapter.

In the case of equations of the third degree, all such prolixity, as we re-

marked in II, 3, § 2, disappears. In fact, we saw in I, 2, § 8, that the dihedral

group of six substitutions, which comes under consideration in connection

with them, can be very well transformed into the homogeneous form, without

the number of its substitutions being increased ; the grounds for the occur-

rence of the accessory irrationality which we have recognised as appropriate

for equations of the fourth and fifth degrees are therefore wanting.
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introduced as a rational function of the aj’s, and therefore in

such wise that to every point of the curve corresponds only one

A.* I will assume, for the sake of brevity, that the A appearing

in (33) is already chosen in the manner here indicated. Then
every one-valued transformation which transforms onr curve

into itself, in particular therefore every even permutation of

tlie c>t;„’s, establislies for A a one-valued transformation having

a one-valued reciprocal and therefore a linear transformation.

Thus we obtain corresponding to the GO even permutations of

the rr/s a group of linear substitution, simply isomorphic with

them, of the variable A. By I, 5, § 2, this is of necessity tlie

icosahedral group
;

it appears in tlie canonical form which we
have always maintained as soon as we introduce in place of A a

proper linear function A'=^^^ as parameter. This A', which

is itself a rational ficnction of the xfs, then depends directly on

an icosahedral equation, whereupon the proof of our assertion is

aceomplished.

We append to what has been said a few stray remarks.

First we see that we can reiterate our theorem with unimportant

modifications in tlie problem of the A^s, or, if we like to take

into consideration the octahedron or tetrahedron instead of

the icosahedron, in the equation of tlie fourth degree. We
recognise, further, that for the equation of the fiftli degree

there can be no rational twisted curves which for the whole

of the permutations of the pass over into themselves.

Finally we remark that the occurrence of rational invariant

curves (as we will express it) is altogetlier limited to those

form-problems of which the group is simply isomorphic with

one of the groups of linear substitutions of a variable which

we have previously enumerated.

§ 11. Kronecker’s Theorem.

We have now all the requisite materials for completing the

proof of the oft-mentioned theorem of Kronecker. Our object

is to prove that it is impossible, in the case of any proposed equa-

* Cf. the proof of this theorem in Luroth’s ])aper in Bd. ix. of the Mathe-
matische Annalen (1875).
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tion of the fifth degree, even after adjunction of the square rooi oj

the discriminant, to constnict a rational resolvent which contains

only one 'parameter.

Let us first remark that we can at once impart an apparently

more precise formulation to this theorem, inasmuch as the group

of the even permutations of five things is primitive.* Namely,

we shall be able to derive, on the grounds stated, from every

rational resolvent a fresh equation of the fifth degree F {X)= 0

by means of renewed resolvent construction
;
and here we may

at once subject the Jf’s to ilie condition SA'— 0. The roots Xu

are here severally co-ordinated to the original .r/s in such wise

that the co-ordination remains unaltered for any even permu-

tations of the afs. Wo can therefore write as before :

(35) X^ -=
2)

.

H- q . + r . ./f> + s .

where and 2̂ , ^ depend rationally on the

coefficients of the proposed equation and the square root of the

corresponding discriminant. All that v:e now have to show is

this: that it is impossible to form from the general equation of

the fifth degree, by means of a Tschirnhausian transformation

(35), an equation of the fifth degree 'with only one parameter.

To this end we must reflect generally as to what geometrical

interpretation sucli an equation would have to receive. Tlie

totality of the arbitrary values Xq, a\, x^, x.^, x^, form a simply con-

nected continuum. If we therefore allow Xq, x^, . . . in (35)

to alter arbitrarily, the point X will, at all events, trace out an

irreducible locus. If wo now add the supj)osition that the equa-

tion of the Xjs contains only one i^araineter, the irreducible

locus in question will have to be a eti7i;e, I say now that the

meducible curve so obtained will be to^amsfoi'med into itself for

the 60 even collmeations of space. In fact, in virtue of the con-

vention which we have made concerning the coefficients q, r, s

occurring in (35), the even permutations of the corresjDond

to the even permutations of the xjs
;
while, on the other hand,

we can attain to every permutation of the ir/s (and therefore in

particular to every even permutation thereof) by allowing the

xjs, beginning from any initial values, to move continuously in

a suitable manner.

Of, the definition in 1, 1, § 2.
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^We now return specially to the developments of the preced-

ing chapter. Namely, it is evident that the curve of the X^sjust

described must in every case he rational. For we can suppose

the Xq, ajj, . . . in (35) rationally dependent in some way
on a parameter A, whereupon the Jf*s themselves become

rational functions of this A : we need not regard the objection

that in special cases the A may altogether disappear from the

since we can evidently always avoid such a contingency.

^Jlie premises of the preceding jDaragraph are therefore in fact

given. We conclude that we can establish a rational function

of the XyS which for the even permutations of the XyS undergoes

the ieosahedral substitutions. This function would by virtue of

(35) also depend rationally on the O/v’s in such wise that it

would undergo ieosahedral substitutions for the even permuta-

tions of the a;„’s. But now we have expressly proved in § 9

that such a rational function of the x/s is impossible. JFe

therefore arrive at a complete contradiction
j
and must therefore

give up our assumption that a Tschirnhausian transformation

(35) exists with the property more precisely described above,

qx.d.

I conclude by adding a few more general observations on the

theory of equations.

First, if in the foregoing exposition we substitute through-

out the octahedron or tetrahedron for the icosahedron, we can

repeat all our considerations unaltered for the equation of the

fourth degree till we come to the one that treats of the primiti-

vity of the corresponding group. The group of the equation of

the fourth degree is composite. If, therefore, we wish to

recover Kronecker’s theorem for the equation of the fourth

degree, we must expressly add to it the condition that the

group of the resolvent coming under consideration is to be simply

isomorphic with the groups of the twenty-four or the twelve per-

mutations of Xq, .'Tg, x^. If we leave out this condition,

rational resolvents of the general equation of the fourth degree

may very well occur which contain only one parameter. The
empirical proof thereof is effected by the ordinary solution of

the equation of the fourth degree. In fact, this operates merely

with auxiliary equations which contain only one parameter,

namely, with binomial equations.

In the case of equations of the third degree, there can, of
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course, on the grounds of our previous remarks, be no question

of a theorem corresponding to Kronecker s.

Concerning equations of a higher degree^ I will liere, in order

not to be prolix, only make one remark, retaining therein, for

the sake of simplification, the restriction wliicli we formulated

just now for the fourth degree. On the supposition mentioned,

resolvents with only one parameter—disregarding special and

easily-recognised cases—are impossible in the case of the general

equation, for the reason that, according to the observation of

§ 10, among the corresponding invariant curves no rational

ones can exist.
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